Skip to main content

Crew Performance and EVA Requirements

  • Living reference work entry
  • First Online:
Handbook of Lunar Base Design and Development

Abstract

The initial construction and ongoing maintenance and operation of any lunar base will be intimately tied to the level of performance that human crews can provide. Human performance relies on the coordination and harmonized functioning of multiple physiological and engineering systems. There are two central components that enable human performance in all phases of lunar exploration. First, a habitat that allows not only for human survival but maintenance of human performance capabilities while on the lunar surface; and second, the spacesuit that enables the ability to perform extravehicular activity (EVA) tasks over long durations of time and repeated days of EVA without undo fatigue and increased injury risk. This chapter considers the physiologic contributors to human performance and reviews the lessons learned and countermeasures developed from prior spaceflight EVA and operating experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abercromby AF, Gernhardt ML, Conkin J (2008) Potential benefit of intermittent recompression in reducing decompression stress during lunar extravehicular activities

    Google Scholar 

  • Abercromby AFJ, Gernhardt ML, Litaker H (2010) Desert research and technology studies (DRATS) 2008 evaluation of small pressurized rover and unpressurized rover prototype vehicles in a lunar analog environment. NASA

    Google Scholar 

  • Abercromby AF, Gernhardt ML, Litaker H (2012) Desert research and technology studies (DRATS) 2009: a 14-day evaluation of the space exploration vehicle prototype in a lunar analog environment

    Google Scholar 

  • Abercromby AF, Conkin J, Gernhardt ML (2015) Modeling a 15-min extravehicular activity prebreathe protocol using NASA′s exploration atmosphere (56.5 kPa/34% O2). Acta Astronaut 109:76–87

    Article  ADS  Google Scholar 

  • Abercromby A, Alpert B, Cupples J, Dillon E, Garbino A, Hernandez Y, Kovich C, Miller M, Norcross J, Pittman C, Rajulu S, Rhodes R (2019) Integrated extravehicular activity human research & testing plan: 2019. Johnson Space Center, Houston

    Google Scholar 

  • Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201. https://doi.org/10.1152/japplphysiol.00346.2003

    Article  Google Scholar 

  • Bamman MM, Hunter GR, Stevens BR, Guilliams ME, Greenisen MC (1997) Resistance exercise prevents plantar flexor deconditioning during bed rest. Med Sci Sports Exerc 29:1462–1468

    Article  Google Scholar 

  • Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84. https://doi.org/10.1097/00005768-200001000-00012

    Article  Google Scholar 

  • Beisner E (2018) Quantifying extravehicular activity performance degradation due to sustenance deprivation. University of North Dakota

    Google Scholar 

  • Bloomberg JJ, Mulavara AP (2003) Changes in walking strategies after spaceflight. IEEE Eng Med Biol Mag 22:58–62. https://doi.org/10.1109/memb.2003.1195697

    Article  Google Scholar 

  • Bloomberg JJ, Peters BT, Smith SL, Huebner WP, Reschke MF (1997) Locomotor head-trunk coordination strategies following space flight. J Vestib Res 7:161–177

    Google Scholar 

  • Brooks N, Cloutier GJ, Cadena SM, Layne JE, Nelsen CA, Freed AM, Roubenoff R, Castaneda-Sceppa C (2008) Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit. J Appl Physiol 105:241–248. https://doi.org/10.1152/japplphysiol.01346.2007

    Article  Google Scholar 

  • Chappell SP, Norcross JR, Abercromby AFJ, Bekdash OS, Benson EA, Jarvis SL (2017) Evidence report: risk of injury and compromised performance due to EVA operations. NASA Johnson Space Center, NASA

    Google Scholar 

  • Conkin J, Norcross JR, Abercromby AF, Wessel JH III, Klein JS, Dervay JP, Gernhardt ML (2016) Evidence report: risk of decompression sickness (DCS). NASA Johnson Space Center

    Google Scholar 

  • Dillon EL (2013) Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids 45:431–441. https://doi.org/10.1007/s00726-012-1438-0

    Article  Google Scholar 

  • Downs M, Norcross J, English KL, Bekdash O, Klein J, Benson L, Goetchius E, Buxton RE, Ploutz-Snyder L, Abercromby A (2018) ISS crewmember aerobic capacity compared with metabolic cost of simulated exploration extravehicular activity. Dallas

    Google Scholar 

  • English KL (2013) Effects of leucine on skeletal muscle during 14 d bed rest in middle-aged adults. University of Texas Medical Branch

    Google Scholar 

  • English KL, Lee SMC, Loehr JA, Ploutz-Snyder RJ, Ploutz-Snyder LL (2015) Isokinetic strength changes following long-duration spaceflight on the ISS. Aerosp Med Hum Perform 86:A68–A77. https://doi.org/10.3357/AMHP.EC09.2015

    Article  Google Scholar 

  • Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Phys 270:E627–E633. https://doi.org/10.1152/ajpendo.1996.270.4.E627

    Article  Google Scholar 

  • Glasauer S, Amorim MA, Bloomberg JJ, Reschke MF, Peters BT, Smith SL, Berthoz A (1995) Spatial orientation during locomotion [correction of locomation] following space flight. Acta Astronaut 36:423–431. https://doi.org/10.1016/0094-5765(95)00127-1

    Article  ADS  Google Scholar 

  • Gopalakrishnan R, Genc KO, Rice AJ, Lee SMC, Evans HJ, Maender CC, Ilaslan H, Cavanagh PR (2010) Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med 81:91–102. https://doi.org/10.3357/asem.2583.2010

    Article  Google Scholar 

  • Greenisen MC, Hayes JC, Siconolfi SF, Moore AD (1999) Functional performance evaluation. Extended duration orbiter medical project, final report. National Aeronautics and Space Administration: 31-324 Houston

    Google Scholar 

  • Greenleaf JE, Bernauer EM, Ertl AC, Trowbridge TS, Wade CE (1989) Work capacity during 30 days of bed rest with isotonic and isokinetic exercise training. J Appl Physiol 67:1820–1826

    Article  Google Scholar 

  • Greenleaf JE, Vernikos J, Wade CE, Barnes PR (1992) Effect of leg exercise training on vascular volumes during 30 days of 6 degrees head-down bed rest. J Appl Physiol 72:1887–1894

    Article  Google Scholar 

  • Kanelakos A, Theriot I, Mavridis C, Wray S, Graff T, Welsh D (2020) Artemis EVA flight operations: preparing for lunar EVA training and execution. Houston

    Google Scholar 

  • Kashihara H, Haruna Y, Suzuki Y, Kawakubo K, Takenaka K, Bonde-Petersen F, Gunji A (1994) Effects of mild supine exercise during 20 days bed rest on maximal oxygen uptake rate in young humans. Acta Physiol Scand Suppl 616:19–26

    Google Scholar 

  • Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291:E381–E387. https://doi.org/10.1152/ajpendo.00488.2005

    Article  Google Scholar 

  • Kuznetz LH (1979) A two-dimensional transient mathematical model of human thermoregulation. Am J Physiol 237:R266–R277

    Google Scholar 

  • Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012. https://doi.org/10.1359/JBMR.040307

    Article  Google Scholar 

  • LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A et al (2000a) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164

    Article  Google Scholar 

  • LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000b) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160

    Google Scholar 

  • Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol (1985) 81:686–694. https://doi.org/10.1152/jappl.1996.81.2.686

    Article  Google Scholar 

  • Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore M, Layman DK, Paddon-Jones D (2014) Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr 144:876–880. https://doi.org/10.3945/jn.113.185280

    Article  Google Scholar 

  • Miller M, Claybrook A, Greenlund S, Marquez J, GFeigh K (2017) Operational assessment of Apollo lunar surface extravehicular activity. Johnson Space Center, Houston

    Google Scholar 

  • Møllerløkken A, Gutvik C, Berge VJ, Jørgensen A, Løset A, Brubakk AO (2007) Recompression during decompression and effects on bubble formation in the pig. Aviat Space Environ Med 78:557–560

    Google Scholar 

  • Moore AD Jr, Downs ME, Lee SM, Feiveson AH, Knudsen P, Ploutz-Snyder L (2014) Peak exercise oxygen uptake during and following long-duration spaceflight. J Appl Physiol (1985) 117:231–238. https://doi.org/10.1152/japplphysiol.01251.2013

    Article  Google Scholar 

  • Moore AD, Lynn PA, Feiveson AH (2015) The first 10 years of aerobic exercise responses to long-duration ISS flights. Aerosp Med Hum Perform 86:A78–A86. https://doi.org/10.3357/AMHP.EC10.2015

    Article  Google Scholar 

  • Mulavara AP, Feiveson AH, Fiedler J, Cohen H, Peters BT, Miller C, Brady R, Bloomberg JJ (2010) Locomotor function after long-duration space flight: effects and motor learning during recovery. Exp Brain Res 202:649–659. https://doi.org/10.1007/s00221-010-2171-0

    Article  Google Scholar 

  • Mulavara AP, Peters BT, Miller CA, Kofman IS, Reschke MF, Taylor LC, Lawrence EL, Wood SJ, Laurie SS, Lee SMC, Buxton RE, May-Phillips TR, Stenger MB, Ploutz-Snyder LL, Ryder JW, Feiveson AH, Bloomberg JJ (2018) Physiological and functional alterations after spaceflight and bed rest. Med Sci Sports Exerc 50:1961–1980. https://doi.org/10.1249/MSS.0000000000001615

    Article  Google Scholar 

  • NASA (2014) Human integration design handbook (HIDH) NASA/SP-2010-3407/Rev1. National Aeronautics and Space Administration, NASA Headquarters

    Google Scholar 

  • NASA (2021) Nasa space flight human-system standard volume 2: Human factors, habitability, and environmental health

    Google Scholar 

  • NASA EAWG (2010) Recommendations for exploration spacecraft internal atmospheres: the final report of the NASA exploration atmospheres working group. NASA Technical Publication NASA/TP-2010-216134

    Google Scholar 

  • Norcross JR, Norsk P, Law J, Arias D, Conkin J, Perchonok M, Menon A, Huff A, Fogarty J, Wessel J (2013) Effects of the 8 psia/32% O2 atmosphere on the human in the spaceflight environment. National Aeronautics and Space Administration, Hanover

    Google Scholar 

  • Paddon-Jones D, Sheffield-Moore M, Urban RJ, Sanford AP, Aarsland A, Wolfe RR, Ferrando AA (2004) Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab 89:4351–4358. https://doi.org/10.1210/jc.2003-032159

    Article  Google Scholar 

  • Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL (1992) Recovery of postural equilibrium control following spaceflight. Ann N Y Acad Sci 656:747–754. https://doi.org/10.1111/j.1749-6632.1992.tb25253.x

    Article  ADS  Google Scholar 

  • Peters BT, Miller CA, Brady RA, Richards JT, Mulavara AP, Bloomberg JJ (2011) Dynamic visual acuity during walking after long-duration spaceflight. Aviat Space Environ Med 82:463–466. https://doi.org/10.3357/asem.2928.2011

    Article  Google Scholar 

  • Pilmanis AA, Webb JT, Kannan N, Balldin U (2002) The effect of repeated altitude exposures on the incidence of decompression sickness. Aviat Space Environ Med 73:525–531

    Google Scholar 

  • Ploutz-Snyder LL, Downs M, Ryder J, Hackney K, Scott J, Buxton R, Goetchius E, Crowell B (2014) Integrated resistance and aerobic exercise protects fitness during bed rest. Med Sci Sports Exerc 46:358–368. https://doi.org/10.1249/MSS.0b013e3182a62f85

    Article  Google Scholar 

  • Reschke MF, Bloomberg JJ, Paloski WH, Harm DL, Parker DE (1994a) Physiological adaptation to spaceflight; neurophysological aspects: sensory and sensory-motor function. In: Nicogossian A, Huntoon CL, Pool S (eds) Space physiology and medicine. Lea & Febiger, Philadelphia, pp 261–285

    Google Scholar 

  • Reschke MF, Bloomberg JJ, Harm DL, Paloski WH (1994b) Space flight and neurovestibular adaptation. J Clin Pharmacol 34:609–617. https://doi.org/10.1002/j.1552-4604.1994.tb02014.x

    Article  Google Scholar 

  • Scheuring R, Jones J, Polk J, FGillis D, Schmid J, Duncan J, Davis J (2007) The Apollo medical operations project: recommendations to improve crew health and performance for future exploration missions and lunar surface operations. NASA, Johnson Space Center, Houston

    Google Scholar 

  • Scott JM, Hackney K, Downs M, Guined J, Ploutz-Snyder R, Fiedler J, Cunningham D, Ploutz-Snyder L (2014) The metabolic cost of an integrated exercise program performed during 14 days of bed rest. Aviat Space Environ Med 85:612–617

    Article  Google Scholar 

  • Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE (2005) The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr 135:437–443

    Article  Google Scholar 

  • Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR (2012) Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res 27:1896–1906. https://doi.org/10.1002/jbmr.1647

    Article  Google Scholar 

  • Stein TP (2013) Weight, muscle and bone loss during space flight: another perspective. Eur J Appl Physiol 113:2171–2181. https://doi.org/10.1007/s00421-012-2548-9

    Article  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I (1999a) Protein kinetics during and after long-duration spaceflight on MIR. Am J Phys 276:E1014–E1021. https://doi.org/10.1152/ajpendo.1999.276.6.e1014

    Article  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MD, Hoyt RW, Lane HW, Gretebeck RE, LeBlanc AD (1999b) Energy expenditure and balance during spaceflight on the space shuttle. Am J Phys 276:R1739–R1748. https://doi.org/10.1152/ajpregu.1999.276.6.r1739

    Article  Google Scholar 

  • Stein TP, Larina IM, Leskiv MJ, Schluter MD (2000) [Protein turnover during and after extended space flight]. Aviakosm Ekolog Med 34:12–6

    Google Scholar 

  • Strauss S, Krog RL, Feiveson AH (2005) Extravehicular mobility unit training and astronaut injuries. Aviat Space Environ Med 76:469–474

    Google Scholar 

  • Stremel RW, Convertino VA, Bernauer EM, Greenleaf JE (1976) Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest. J Appl Physiol 41:905–909. https://doi.org/10.1152/jappl.1976.41.6.905

    Article  Google Scholar 

  • Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D (2006) Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol (1985) 100:951–957. https://doi.org/10.1152/japplphysiol.01083.2005

    Article  Google Scholar 

  • Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH (2009) Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. J Appl Physiol 106:1159–1168. https://doi.org/10.1152/japplphysiol.91578.2008

    Article  Google Scholar 

  • Williams D, Kuipers A, Mukai C, Thirsk R (2009) Acclimation during space flight: effects on human physiology. CMAJ 180:1317–1323. https://doi.org/10.1503/cmaj.090628

    Article  Google Scholar 

  • Wolfe RR, Cifelli AM, Kostas G, Kim IY (2017) Optimizing protein intake in adults: interpretation and application of the recommended dietary allowance compared with the acceptable macronutrient distribution range. Adv Nutr 8:266–275. https://doi.org/10.3945/an.116.013821

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghan Downs .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Downs, M., Norcross, J. (2022). Crew Performance and EVA Requirements. In: Eckart, P., Aldrin, A. (eds) Handbook of Lunar Base Design and Development. Springer, Cham. https://doi.org/10.1007/978-3-030-05323-9_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05323-9_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05323-9

  • Online ISBN: 978-3-030-05323-9

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics