Skip to main content

Hydrogen Production from Photoelectrochemical Water Splitting

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

PEC cell:

Photoelectrochemical cell for water splitting that converts solar energy directly to hydrogen fuel from photoelectrolysis. It comprises a photoelectrode and a counter electrode immersed in an electrolyte solution.

PV cell:

Photovoltaic solar cell for electricity generation from sunlight.

Solar tandem cell:

Solar cell consisting of two or more absorbers stacked one over the others, which together convert more of the sunlight spectrum and therefore increase the overall cell efficiency.

PEC-PV tandem:

PV-assisted PEC water splitting system, i.e., an integrated PV-PEC device where a PV cell is stacked on a photoelectrode for providing the necessary bias voltage to photoelectrochemical water splitting.

Photoelectrode:

Photoelectrode is an electrode capable of initiating electrochemical transformations after absorbing light quanta (definition by IUPAC). In the solar water splitting context, photoelectrode is made of a semiconductor film on an electrically conductive...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Yilmaz F, Balta MT, Selbaş R (2016) A review of solar based hydrogen production methods. Renew Sust Energ Rev 56:171–178

    Article  Google Scholar 

  2. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  Google Scholar 

  3. EIA (2015) Annual energy outlook 2015. [cited 2015 September]. www.eia.doe.gov

  4. van de Krol R, Grätzel M (2012) Introduction. In: van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production. Springer, New York, pp 3–11

    Chapter  Google Scholar 

  5. REN21 (2015) Renewables 2015 global status report. [cited 2015 October]. www.ren21.net

  6. Lopes T, Andrade L, Mendes A (2013) Photoelectrochemical cells for hydrogen production from solar energy. In: Akbarzadeh NEA (ed) Solar energy sciences and engineering applications. CRC Press, Boca Raton, pp 293–341

    Chapter  Google Scholar 

  7. Pinaud BA et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983–2002

    Article  Google Scholar 

  8. Chen Z et al (2010) Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 25(01):3–16

    Article  Google Scholar 

  9. SPE. Global market outlook for solar power 2015–2019. [cited 2015 May]. www.solarpowereurope.org

  10. Walter MG et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  Google Scholar 

  11. Nowotny J et al (2005) Solar-hydrogen: environmentally safe fuel for the future. Int J Hydrog Energy 30(5):521–544

    Article  Google Scholar 

  12. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535

    Article  Google Scholar 

  13. Miller EL (2010) Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge. In: Vayssieres L (ed) On solar hydrogen & nanotechnology. Wiley, New York, pp 3–32

    Google Scholar 

  14. Coelho B, Oliveira AC, Mendes A (2010) Concentrated solar power for renewable electricity and hydrogen production from water – a review. Energy Environ Sci 3(10):1398–1405

    Article  Google Scholar 

  15. Grimes CA, Varghese OK, Ranjan S (2008) Hydrogen generation by water splitting. In: Light, water, hydrogen. Springer, New York, pp 35–114

    Chapter  Google Scholar 

  16. Grimes CA, Varghese OK, Ranjan S (2008) Photoelectrolysis. In: Light, water, hydrogen. Springer, New York, pp 115–190

    Chapter  Google Scholar 

  17. Rothschild A, Dotan H (2017) Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis. ACS Energy Lett 2:45–51

    Article  Google Scholar 

  18. Krol R (2012) Photo-electrochemical production of hydrogen. In: van de Krol R, Schoonman J (eds) Photoelectrochemical hydrogen production. Springer US, New York, pp 121–142

    Chapter  Google Scholar 

  19. Aruchamy A, Aravamudan G, Subba Rao G (1982) Semiconductor based photoelectrochemical cells for solar energy conversion – an overview. Bull Mater Sci 4(5):483–526

    Article  Google Scholar 

  20. Minggu LJ, Wan Daud WR, Kassim MB (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting. Int J Hydrog Energy 35(11):5233–5244

    Article  Google Scholar 

  21. Dumortier M, Tembhurne S, Haussener S (2015) Holistic design guidelines for solar hydrogen production by photo-electrochemical routes. Energy Environ Sci 8(12):3614–3628

    Article  Google Scholar 

  22. Nozik AJ (1978) Photoelectrochemistry: applications to solar energy conversion. Annu Rev Phys Chem 29(1):189–222

    Article  Google Scholar 

  23. Lopes T et al (2014) Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy. Phys Chem Chem Phys 16(31):16515–16523

    Article  Google Scholar 

  24. Lopes T et al (2012) E-MRS/MRS bilateral energy conference innovative technological configurations of photoelectrochemical cells. Energy Procedia 22:35–40

    Article  Google Scholar 

  25. Ager Iii JW et al (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci 8(10):2811–2824

    Article  Google Scholar 

  26. Smith WA (2016) Photoelectrochemical cell design, efficiency, definitions, standards, and protocols. In: Giménez S, Bisquert J (eds) Photoelectrochemical solar fuel production: from basic principles to advanced devices. Springer International Publishing, Cham, pp 163–197

    Chapter  Google Scholar 

  27. Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18(20):2311–2320

    Article  Google Scholar 

  28. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4):432–449

    Article  Google Scholar 

  29. Weber MF, Dignam MJ (1984) Efficiency of splitting water with semiconducting photoelectrodes. J Electrochem Soc 131(6):1258–1265

    Article  Google Scholar 

  30. Murphy AB et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrog Energy 31(14):1999–2017

    Article  Google Scholar 

  31. Abdi FF et al (2013) The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett 4(16):2752–2757

    Article  Google Scholar 

  32. Klahr B et al (2012) Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 134(9):4294–4302

    Article  Google Scholar 

  33. Klotz D et al (2016) Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS. Phys Chem Chem Phys 18(34):23438–23457

    Article  Google Scholar 

  34. Barroso M et al (2013) Charge carrier trapping, recombination and transfer in hematite ([small alpha]-Fe2O3) water splitting photoanodes. Chem Sci 4(7):2724–2734

    Article  Google Scholar 

  35. Sivula K, van de Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1:16010

    Article  Google Scholar 

  36. Lancelle-Beltran E et al (2008) Eur J Inorg Chem:903

    Google Scholar 

  37. James BD et al (2009) Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production, U.D. Report, editor. Directed Technologies, Virginia

    Book  Google Scholar 

  38. Zafer C et al (2005) Sol Energy Mater Sol Cells 88:11

    Article  Google Scholar 

  39. Grimes CA, Varghese OK, Ranjan S (2008) Oxide semiconducting materials as photoanodes. In: Light, water, hydrogen. Springer, New York, pp 191–255

    Chapter  Google Scholar 

  40. Grimes CA, Varghese OK, Ranjan S (2008) Non-oxide semiconductor nanostructures. In: Light, water, hydrogen. Springer, New York, pp 427–483

    Chapter  Google Scholar 

  41. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54

    Article  Google Scholar 

  42. Wang G et al (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C: Photochem Rev 19:35–51

    Article  Google Scholar 

  43. Nowotny J et al (2007) Titanium dioxide for solar-hydrogen I. Functional properties. Int J Hydrog Energy 32(14):2609–2629

    Article  Google Scholar 

  44. Grimes CA, Varghese OK, Ranjan S (2008) Oxide semiconductors: nano-crystalline, tubular and porous systems. In: Light, water, hydrogen. Springer, New York, pp 257–369

    Chapter  Google Scholar 

  45. Mavroides JG, Kafalas JA, Kolesar DF (1976) Photoelectrolysis of water in cells with SrTiO3 anodes. Appl Phys Lett 28(5):241–243

    Article  Google Scholar 

  46. Wang C et al (2014) Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J Mater Chem A 2(42):17820–17827

    Article  Google Scholar 

  47. Bak T et al (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27(10):991–1022

    Article  Google Scholar 

  48. Liu Q et al (2015) Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting. Int J Hydrog Energy 40(5):2107–2114

    Article  Google Scholar 

  49. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590):2243–2245

    Article  Google Scholar 

  50. Dias P et al (2016) Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles. Phys Chem Chem Phys 18(7):5232–5243

    Article  Google Scholar 

  51. Liu X, Wang F, Wang Q (2012) Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys 14(22):7894–7911

    Article  Google Scholar 

  52. Zhu T, Chong MN, Chan ES (2014) Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. ChemSusChem 7(11):2974–2997

    Article  Google Scholar 

  53. Solarska R, Jurczakowski R, Augustynski J (2012) A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Nanoscale 4(5):1553–1556

    Article  Google Scholar 

  54. Seabold JA, Choi K-S (2011) Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 23(5):1105–1112

    Article  Google Scholar 

  55. Kwong WL, Lee CC, Messinger J (2016) Transparent nanoparticulate FeOOH improves the performance of a WO3 photoanode in a tandem water-splitting device. J Phys Chem C 120(20):10941–10950

    Article  Google Scholar 

  56. Wang S et al (2016) Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 24:94–102

    Article  Google Scholar 

  57. Satsangi VR, Dass S, Shrivastav R (2010) Nanostructured α-Fe2O3 in PEC generation of hydrogen. In: On solar hydrogen & nanotechnology. Wiley, New York, pp 349–397

    Chapter  Google Scholar 

  58. Warren SC et al (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12(9):842–849

    Article  Google Scholar 

  59. Hardee KL, Bard AJ (1976) Semiconductor electrodes: V. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis. J Electrochem Soc 123(7):1024–1026

    Article  Google Scholar 

  60. Kim JY et al (2014) A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting: towards stability engineering. Adv Energy Mater 4(13):1614–6840

    Article  Google Scholar 

  61. Dias P et al (2016) Extremely stable bare hematite photoanode for solar water splitting. Nano Energy 23:70–79

    Article  Google Scholar 

  62. Satsangi VR et al (2008) Nanostructured hematite for photoelectrochemical generation of hydrogen. Int J Hydrog Energy 33(1):312–318

    Article  Google Scholar 

  63. Mayer MT et al (2013) Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc Chem Res 46(7):1558–1566

    Article  Google Scholar 

  64. Cesar I et al (2008) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113(2):772–782

    Article  Google Scholar 

  65. Hu Y-S et al (2009) Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem Commun (19):2652–2654

    Google Scholar 

  66. Ling Y et al (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11(5):2119–2125

    Article  Google Scholar 

  67. Kim JY et al (2013) Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep 3:2681

    Article  Google Scholar 

  68. Le Formal F et al (2014) Back electron–hole recombination in hematite photoanodes for water splitting. J Am Chem Soc 136(6):2564–2574

    Article  Google Scholar 

  69. Tilley SD et al (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49(36):1521–3773

    Article  Google Scholar 

  70. Morales-Guio CG et al (2015) An optically transparent iron nickel oxide catalyst for solar water splitting. J Am Chem Soc 137(31):9927–9936

    Article  Google Scholar 

  71. Jeon TH et al (2017) Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays. Nano Energy 39:211–218

    Article  Google Scholar 

  72. Lefrou C, Fabry P, Poignet J-C (2012) Thermodynamic features. In: Electrochemistry. Springer, Berlin/Heidelberg, pp 119–168

    Chapter  Google Scholar 

  73. Iandolo B et al (2015) The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J Mater Chem A 3(33):16896–16912

    Article  Google Scholar 

  74. Zandi O, Hamann TW (2015) The potential versus current state of water splitting with hematite. Phys Chem Chem Phys 17(35):22485–22503

    Article  Google Scholar 

  75. Dias P, Andrade L, Mendes A (2017) Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy 38:218–231

    Article  Google Scholar 

  76. Jang J-W et al (2015) Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun 6:7447

    Article  Google Scholar 

  77. Abdi FF, Firet N, van de Krol R (2013) Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. ChemCatChem 5(2):490–496

    Article  Google Scholar 

  78. Sayama K et al (2006) Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J Phys Chem B 110(23):11352–11360

    Article  Google Scholar 

  79. Walsh A et al (2009) Band edge electronic structure of BiVO4: elucidating the role of the bi s and V d Orbitals. Chem Mater 21(3):547–551

    Article  Google Scholar 

  80. Wang Z et al (2011) BiVO4 nano-leaves: mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation. CrystEngComm 13(7):2500–2504

    Article  Google Scholar 

  81. Abdi FF et al (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195

    Article  Google Scholar 

  82. Pihosh Y et al (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141

    Article  Google Scholar 

  83. Han L et al (2014) Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. ChemSusChem 7(10):2832–2838

    Article  Google Scholar 

  84. Shi X et al (2015) Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy 13:182–191

    Article  Google Scholar 

  85. Yourey JE, Bartlett BM (2011) Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J Mater Chem 21(21):7651–7660

    Article  Google Scholar 

  86. Zhen C et al (2016) Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. J Mater Chem A 4(8):2783–2800

    Article  Google Scholar 

  87. Li Y et al (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun 4:2566

    Article  Google Scholar 

  88. Liu G et al (2016) Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ Sci 9(4):1327–1334

    Article  Google Scholar 

  89. Liu G et al (2015) Efficient hole extraction from a hole-storage-layer-stabilized tantalum nitride photoanode for solar water splitting. Chem Eur J 21(27):9624–9628

    Article  Google Scholar 

  90. Wang G et al (2011) Hydrogen-treated TiO2 Nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033

    Article  Google Scholar 

  91. Qiu Y et al (2016) Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv 2(6):e1501764

    Article  Google Scholar 

  92. Li Y et al (2016) WO3@α-Fe2O3 Heterojunction arrays with improved photoelectrochemical behavior for neutral pH water splitting. ChemCatChem 8(17):2765–2770

    Article  Google Scholar 

  93. Hajibabaei H, Zandi O, Hamann TW (2016) Tantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting. Chem Sci 7(11):6760–6767

    Article  Google Scholar 

  94. Memming R, Schwandt G (1968) Electrochemical properties of gallium phosphide in aqueous solutions. Electrochim Acta 13(6):1299–1310

    Article  Google Scholar 

  95. Heller A (1981) Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc Chem Res 14(5):154–162

    Article  Google Scholar 

  96. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427

    Article  Google Scholar 

  97. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C: Photochem Rev 11(4):179–209

    Article  Google Scholar 

  98. Nakato Y et al (1987) Hydrogen photoevolution at p-type silicon electrodes coated with discontinuous metal layers. J Electroanal Chem 228(1–2):97–108

    Article  Google Scholar 

  99. Hamann TW, Lewis NS (2006) Control of the stability, electron-transfer kinetics, and pH-dependent energetics of Si/H2O interfaces through methyl termination of Si(111) surfaces. J Phys Chem B 110(45):22291–22294

    Article  Google Scholar 

  100. Lin Y et al (2013) Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett 13(11):5615–5618

    Article  Google Scholar 

  101. Meyer BK et al (2012) Binary copper oxide semiconductors: from materials towards devices. Phys Status Solidi B 249(8):1487–1509

    Article  Google Scholar 

  102. Paracchino A et al (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461

    Article  Google Scholar 

  103. Azevedo J et al (2014) On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ Sci 7(12):4044–4052

    Article  Google Scholar 

  104. Tilley SD et al (2013) Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv Funct Mater 24(3):1616–3028

    Google Scholar 

  105. Luo J et al (2016) Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett 16(3):1848–1857

    Article  Google Scholar 

  106. Dias P et al (2015) Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting. Adv Energy Mater 5(24):1614–6840

    Article  Google Scholar 

  107. Prévot MS, Guijarro N, Sivula K (2015) Enhancing the performance of a robust sol–gel-processed p-type Delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem 8(8):1359–1367

    Article  Google Scholar 

  108. Li Z et al (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6(2):347–370

    Article  Google Scholar 

  109. Shen S et al (2016) Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ Sci 9(9):2744–2775

    Article  Google Scholar 

  110. Gross Koren M, Dotan H, Rothschild A (2016) Nano gold rush: on the origin of the photocurrent enhancement in hematite photoanodes decorated with gold Nanoparticles. J Phys Chem C 120(28):15042–15051

    Article  Google Scholar 

  111. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320

    Article  Google Scholar 

  112. Guijarro N, Prevot MS, Sivula K (2015) Surface modification of semiconductor photoelectrodes. Phys Chem Chem Phys 17(24):15655–15674

    Article  Google Scholar 

  113. Montoya JH et al (2017) Materials for solar fuels and chemicals. Nat Mater 16(1):70–81

    Article  Google Scholar 

  114. Fabbri E et al (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Cat Sci Technol 4(11):3800–3821

    Article  Google Scholar 

  115. Seh ZW et al (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321)

    Article  Google Scholar 

  116. Morales-Guio CG et al (2014) Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun 5:3059

    Article  Google Scholar 

  117. Zhang D et al (2015) One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction. Electrochim Acta 169:402–408

    Article  Google Scholar 

  118. Zeradjanin AR et al (2014) Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation. RSC Adv 4(19):9579–9587

    Article  Google Scholar 

  119. Chang JA et al (2012, 1863) Nano Lett 12

    Google Scholar 

  120. Gamelin DR (2012) Water splitting: catalyst or spectator? Nat Chem 4(12):965–967

    Article  Google Scholar 

  121. Faughnan BW, Kiss ZJ (1968) Phys Rev Lett 21:1331

    Article  Google Scholar 

  122. Chang JA et al (2010) Nano Lett 10:2609

    Article  Google Scholar 

  123. Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117(35):17879–17893

    Article  Google Scholar 

  124. Conibeer GJ, Richards BS (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. Int J Hydrog Energy 32(14):2703–2711

    Article  Google Scholar 

  125. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851

    Article  Google Scholar 

  126. Luo J et al (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204):1593–1596

    Article  Google Scholar 

  127. Zhang K et al (2016) Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv Energy Mater 6(15):1600602

    Article  Google Scholar 

  128. Mor GK et al (2008) P-type cu−Ti−O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8(10):3555–3555

    Article  Google Scholar 

  129. Seger B et al (2014) 2-photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ Sci 7(8):2397–2413

    Article  Google Scholar 

  130. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  131. Grätzel M, Augustynski J Tandem cell for water cleavage by visible light 2001. EPFL

    Google Scholar 

  132. Duret A, Gratzel M (2005) Visible light-induced water oxidation on Mesoscopic α-Fe2O3 films made by ultrasonic spray Pyrolysis. J Phys Chem B 109(36):17184–17191

    Article  Google Scholar 

  133. Park N-G (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state Mesoscopic solar cell. J Phys Chem Lett 4(15):2423–2429

    Article  Google Scholar 

  134. Tan S et al (2004) J Phys Chem B 108:18693

    Article  Google Scholar 

  135. Cervini R, Cheng Y, Simon G (2004) J Phys D Appl Phys 37:13

    Article  Google Scholar 

  136. Magalhães MAM et al (2010) Glass sealing of dye-sensitized solar cells. Google Patents

    Google Scholar 

  137. May MM et al (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286

    Article  Google Scholar 

  138. Khaselev O, Bansal A, Turner JA (2001) High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrog Energy 26(2):127–132

    Article  Google Scholar 

  139. Kelly NA, Gibson TL (2006) Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int J Hydrog Energy 31(12):1658–1673

    Article  Google Scholar 

  140. Kim JH et al (2016) Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat Commun 7:13380

    Article  Google Scholar 

  141. Wang X et al (2013) Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett 14(1):18–23

    Article  Google Scholar 

  142. Liu C et al (2013) A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett 13(6):2989–2992

    Article  Google Scholar 

  143. Sonya K et al (2016) Tandem photovoltaic–photoelectrochemical GaAs/InGaAsP–WO 3/BiVO 4 device for solar hydrogen generation. Jpn J Appl Phys 55(4S):04ES01

    Article  Google Scholar 

  144. Gaillard N et al (2010) Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’i

    Google Scholar 

  145. Shi X et al (2016) Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nat Commun 7

    Article  Google Scholar 

  146. Brillet J et al (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photon 6(12):824–828

    Article  Google Scholar 

  147. Gurudayal et al (2017) Atomically altered hematite for highly efficient Perovskite tandem water-splitting devices. ChemSusChem 10(11):2449–2456

    Article  Google Scholar 

  148. Gurudayal et al (2016) Highly active MnO catalysts integrated onto Fe2O3 Nanorods for efficient water splitting. Adv Mater Interfaces 3(15):1600176

    Article  Google Scholar 

  149. Luo J et al (2015) Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1-xSe2 photocathodes. Adv Energy Mater 5(24):1501520

    Article  Google Scholar 

  150. Mor GK et al (2009) Nano Lett 9:4250

    Article  Google Scholar 

  151. Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495–500

    Article  Google Scholar 

  152. Xu P et al (2016) Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO4 photoanode and Si nanoarray photocathode. RSC Adv 6(12):9905–9910

    Article  Google Scholar 

  153. Kim JH et al (2016) Overall photoelectrochemical water splitting using tandem cell under simulated sunlight. ChemSusChem 9(1):61–66

    Article  Google Scholar 

  154. Li W et al (2015) Hematite-based solar water splitting in acidic solutions: functionalization by mono- and multilayers of iridium oxygen-evolution catalysts. Angew Chem Int Ed 54(39):11428–11432

    Article  Google Scholar 

  155. Bornoz P et al (2014) A bismuth Vanadate–cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118(30):16959–16966

    Article  Google Scholar 

  156. Lin C-Y et al (2012) Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3(12):3482–3487

    Article  Google Scholar 

  157. Snaith HJ et al (2011) Lead-sulphide quantum-dot sensitization of tin oxide based hybrid solar cells. Sol Energy 85(6):1283–1290

    Article  Google Scholar 

  158. Ingler WB, Khan SUM (2006) A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting, vol 9. ETATS-UNIS: Institute of Electrical and Electronics Engineers, Pennington

    Google Scholar 

  159. Kainthla RC, Zelenay B, Bockris JO (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Electrochem Soc 134(4):841–845

    Article  Google Scholar 

  160. Turner JE, Hendewerk M, Somorjai GA (1984) The photodissociation of water by doped iron oxides: the unblased p/n assembly. Chem Phys Lett 105(6):581–585

    Article  Google Scholar 

  161. Mettee H, Otvos JW, Calvin M (1981) Solar induced water splitting with p/n heterotype photochemical diodes: n-Fe2O3/p-GaP. Sol Energy Mater 4(4):443–453

    Article  Google Scholar 

  162. Ohashi K, McCann J, Bockris JOM (1977) Stable photoelectrochemical cells for the splitting of water. Nature 266(5603):610–611

    Article  Google Scholar 

  163. Nozik AJ (1976) P-n photoelectrolysis cells. Appl Phys Lett 29(3):150–153

    Article  Google Scholar 

  164. Jacobsson TJ et al (2015) A theoretical analysis of optical absorption limits and performance of tandem devices and series interconnected architectures for solar hydrogen production. Sol Energy Mater Sol Cells 138:86–95

    Article  Google Scholar 

  165. Dias P et al (2014) Temperature effect on water splitting using a Si-doped hematite photoanode. J Power Sources 272:567–580

    Article  Google Scholar 

  166. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York, p XXI, 833

    Google Scholar 

  167. Yang X et al (2015) Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res 8(1):56–81

    Article  Google Scholar 

  168. Gadgil PN (1990) Preparation of iron pyrite films for solar cells by metalorganic chemical vapor deposition. Simon Fraser University, Burnaby, p 241

    Google Scholar 

  169. Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem 82(1–2):133–143

    Article  Google Scholar 

  170. Bard AJ, Wrighton MS (1977) Thermodynamic potential for the anodic dissolution of n-type semiconductors. J Electrochem Soc 124(11):1706–1710

    Article  Google Scholar 

  171. Memming R (2001) Semiconductor electrochemistry, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  172. Sinn C, Meissner D, Memming R (1990) Charge transfer processes at WSe2 electrodes with pH-controlled stability. J Electrochem Soc 137(1):168–172

    Article  Google Scholar 

  173. van de Krol R (2012) Photoelectrochemical measurements. In: Van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production. Springer, New York, pp 13–67

    Chapter  Google Scholar 

  174. Snaith HJ et al (2008) Nanotechnol 19:424003

    Article  Google Scholar 

  175. Lopes T et al (2014) An innovative photoelectrochemical lab device for solar water splitting. Sol Energy Mater Sol Cells 128:399–410

    Article  Google Scholar 

  176. PECDEMO (2017) Photoelectrochemical Demonstrator Device – PECDEMO. [cited 2017 10th January]

    Google Scholar 

  177. Magalhães MAM et al. (2014) Substrate and electrode for solar cells and corresponding manufacturing process. Google Patents

    Google Scholar 

  178. Landman A et al. (2017) Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat Mater. Advance online publication

    Google Scholar 

  179. Lopes T (2014) Characterization and phenomenoligal modeling of photoelectrochemical cells for hydrogen production from solar energy, in Chemical Engineering Departement. University of Porto – FEUP, Porto

    Google Scholar 

  180. Coridan RH et al (2015) Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ Sci

    Google Scholar 

  181. Ding IK et al (2009) Pore-filling of Spiro-OMeTAD in solid-state dye sensitized solar cells: quantification, mechanism, and consequences for device performance. Adv. Funct. Mater 19(19):2431–2436

    Google Scholar 

  182. Dotan H et al (2014) On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J Phys Chem Lett 5(19):3330–3334

    Article  Google Scholar 

  183. Hinsch A et al (2001) Long-term stability of dye-sensitised solar cells. Prog Photovolt Res Appl 9(6):425–438

    Article  Google Scholar 

  184. O’Hayre R et al (2006) Fuel cell fundamentals. Wiley, New York, p XXII, 409

    Google Scholar 

  185. Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Impedance spectroscopy. Wiley, Hoboken, pp 1–26

    Google Scholar 

  186. Barsoukov E, Macdonald JR (eds) (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Wiley-Interscience, Hoboken, p 595

    Google Scholar 

  187. Andrade L, Ribeiro HA, Mendes A (2011) Dye–sensitized solar cells: an overview. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Hoboken

    Google Scholar 

  188. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications. Second ed. Wiley, Hoboken

    Book  Google Scholar 

  189. Bisquert J et al (2016) Analysis of photoelectrochemical systems by impedance spectroscopy. In: Giménez S, Bisquert J (eds) Photoelectrochemical solar fuel production: from basic principles to advanced devices. Springer International Publishing, Cham, pp 281–321

    Chapter  Google Scholar 

  190. Peter LM, Vanmaekelbergh D (2008) Time and frequency resolved studies of photoelectrochemical kinetics. In: Alkire RC, Kolb DM (eds) Advances in electrochemical science and engineering. Wiley, Weinheim, pp 77–164

    Chapter  Google Scholar 

  191. Li W et al (2016) Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ Sci

    Google Scholar 

  192. Archer MD, Nozik AJ (2008) Nanostructured and photoelectrochemical systems for solar photon conversion. Series on photoconversion of solar energy, v. 3. Imperial College Press/World Scientific, London/Singapore/Hackensack

    Book  Google Scholar 

Books and Reviews

  • Ager Iii JW et al (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci 8(10):2811–2824

    Article  Google Scholar 

  • Archer MD, Nozik AJ (2008) Nanostructured and photoelectrochemical systems for solar photon conversion. Series on photoconversion of solar energy, vol 3. Imperial College Press/World Scientific, London/Singapore/Hackensack

    Book  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York, p XXI, 833

    Google Scholar 

  • Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Bisquert J (2014) Nanostructured energy devices: equilibrium concepts and kinetics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bisquert J, Giménez S (2016) Photoelectrochemical solar fuel production: from basic principles to advanced devices. Springer International Publishing, Cham

    Google Scholar 

  • Coridan RH et al (2015) Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ Sci 8:2886–2901

    Article  Google Scholar 

  • Dotan H et al (2014) On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J Phys Chem Lett 5(19):3330–3334

    Article  Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  • Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen. Springer, New York

    Book  Google Scholar 

  • Guijarro N, Prevot MS, Sivula K (2015) Surface modification of semiconductor photoelectrodes. Phys Chem Chem Phys 17(24):15655–15674

    Article  Google Scholar 

  • Hamann CH, Hamnett A, Vielstich W (2007) Electrochemistry. Wiley, Weinheim

    Google Scholar 

  • Huggins RA (2010) Energy storage. Springer US, New York

    Book  Google Scholar 

  • Lopes T, Andrade L, Mendes A (2013) Photoelectrochemical cells for hydrogen production from solar energy. In: Enteria N, Akbarzadeh A (eds) Solar energy sciences and engineering applications. CRC Press, Boca Raton, pp 293–341

    Chapter  Google Scholar 

  • Memming R (2001) Semiconductor electrochemistry, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Montoya JH et al (2017) Materials for solar fuels and chemicals. Nat Mater 16(1):70–81

    Article  Google Scholar 

  • Nozik AJ (1978) Photoelectrochemistry: applications to solar energy conversion. Annu Rev Phys Chem 29(1):189–222

    Article  Google Scholar 

  • O’Hayre R et al (2006) Fuel cell fundamentals. Wiley, New York, p XXII

    Google Scholar 

  • Peter LM, Vanmaekelbergh D (2008) Time and frequency resolved studies of photoelectrochemical kinetics. In: Alkire RC, Kolb DM (eds) Advances in electrochemical science and engineering. Wiley, Weinheim, pp 77–164

    Chapter  Google Scholar 

  • Pierret RF (2003) Advanced semiconductor fundamentals. Modular series on solid state devices, vol VI. Addison-Wesley, Reading

    Google Scholar 

  • Pinaud BA et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983–2002

    Article  Google Scholar 

  • Rothschild A, Dotan H (2017) Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis. ACS Energy Lett 2:45–51

    Article  Google Scholar 

  • Seh ZW et al (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998

    Article  Google Scholar 

  • Shen S et al (2016) Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ Sci 9(9):2744–2775

    Article  Google Scholar 

  • Sivula K (2013) Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J Phys Chem Lett 4(10):1624–1633

    Article  Google Scholar 

  • Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4):432–449

    Article  Google Scholar 

  • Sivula K, van de Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater:16010

    Google Scholar 

  • Smith WA et al (2015) Interfacial band-edge energetics for solar fuels production. Energy Environ Sci

    Google Scholar 

  • van de Krol R, Grätzel M (2012) Photoelectrochemical hydrogen production. Springer US, New York

    Book  Google Scholar 

  • van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18(20):2311–2320

    Article  Google Scholar 

  • Vayssieres L (2010) On solar hydrogen & nanotechnology. Wiley, New York

    Book  Google Scholar 

  • Walter MG et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  Google Scholar 

  • Würfel P (2007) Physics of solar cells. Wiley-VCH, Weinheim, pp 37–84

    Google Scholar 

  • Yang X et al (2015) Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res 8(1):56–81

    Article  Google Scholar 

  • Zhang K et al (2016) Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv Energy Mater 6(15):1600602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélio Mendes .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dias, P., Mendes, A. (2019). Hydrogen Production from Photoelectrochemical Water Splitting. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_957

Download citation

Publish with us

Policies and ethics