Skip to main content

Oxide Semiconductors Nano-Crystalline Tubular and Porous Systems

  • Chapter
Light, Water, Hydrogen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi M, Murata Y, Harada M, Yoshikawa S (2000) Formation of titania nanotubes with high photocatalytic activity. Chem Lett 29:942–943

    Google Scholar 

  2. Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S (2003) Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2) composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process. J Phys Chem B 107: 6586–6589

    Google Scholar 

  3. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195

    Google Scholar 

  4. de Taconni NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K (2006) Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: Influence of process variables on morphology and photoelectrochemical response. J Phys Chem B 110: 25347–25355

    Google Scholar 

  5. Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol 5:1158–1165

    Google Scholar 

  6. Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2002) Application of titania nanotubes to a dye-sensitized solar cell. Electrochem 70:418–420

    Google Scholar 

  7. Adachi M, Murata Y, Okada I, Yoshikawa Y (2003) Formation of titania nanotubes and applications for dye-sensitized solar cells. J Electrochem Soc 150:G488 –G493

    Google Scholar 

  8. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Google Scholar 

  9. Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnol 17:1446–1448

    Google Scholar 

  10. Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413

    Google Scholar 

  11. Lakshmi BB, Dorhout PK, Martin CR (1997) Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862

    Google Scholar 

  12. Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2972

    Google Scholar 

  13. Michailowski A, Al Mawlawi D, Cheng GS, Moskovits M (2001) Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5

    Google Scholar 

  14. Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447

    Google Scholar 

  15. Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K (2002) Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J Am Chem Soc 124:6550–6551

    Google Scholar 

  16. Tian ZR, Voigt JA, Liu J, McKenzie B, Xu H (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385

    Google Scholar 

  17. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Google Scholar 

  18. Chen Q, Zhou WZ, Du GH, Peng LM (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211

    Google Scholar 

  19. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283

    Google Scholar 

  20. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotubes array prepared by anodic oxidation. J Mater Res 16:3331–3334

    Google Scholar 

  21. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588–2593

    Google Scholar 

  22. Cai Q, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20:230–236

    Google Scholar 

  23. Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B 109:15754–15759

    Google Scholar 

  24. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TJ, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μ m in Length. J Phys Chem B 110:16179–16184

    Google Scholar 

  25. Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TJ, Grimes CA (2006) Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 to 222 μ m in length. Sens Lett 4:334–339

    Google Scholar 

  26. Shankar K, Mor GK, Fitzgerald A, Grimes CA (2007) Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J Phys Chem C 111:21–26

    Google Scholar 

  27. Prakasam HE, Shankar K, Paulose M, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem B (in press)

    Google Scholar 

  28. Serpone N, Pelizzetti E (1989) Photocatalysis: Fundamentals and Applications, Wiley, New York

    Google Scholar 

  29. Schiavello M, Dordrecht H (1985) Photoelectrochemistry, Photocatalysis, and Photoreactors: Fundamentals and Developments Kluwer Academic, Boston, MA

    Google Scholar 

  30. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Google Scholar 

  31. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Google Scholar 

  32. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196

    Google Scholar 

  33. Wang C, Bahnemann DW, Dohrmann JK (2000) A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem Commun 16:1539–1540

    Google Scholar 

  34. Wang Y, Hao Y, Cheng H, Ma H, Xu B, Li W, Cai S (1999) The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2 +-doped TiO2 electrode. J Mater Sci 34:2773–2779

    Google Scholar 

  35. Coloma F, Marquez F, Rochester CH, Anderson JA (2000) Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts. Phys Chem Chem Phys 2:5320–5327

    Google Scholar 

  36. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J Phys Chem Solids 63:1909–1920

    Google Scholar 

  37. Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S, Anpo M (1999) Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. J Synchrotron Radiat 6:451–452

    Google Scholar 

  38. Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water. J Phys Chem 97:1184–1189

    Google Scholar 

  39. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Google Scholar 

  40. Lee DH, Cho YS, Yi WI, Kim TS, Lee JK, Jung HJ (1995) Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate. Appl Phys Lett 66:815–816

    Google Scholar 

  41. Saha NC, Tompkins HG (1992) Titanium nitride oxidation chemistry: an X-rayphotoelectron spectroscopy study. J Appl Phys 72:3072–3079

    Google Scholar 

  42. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Google Scholar 

  43. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys 40:L561-L563

    Google Scholar 

  44. Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2 - x Nx powders. J Phys Chem B 107:5483–5486

    Google Scholar 

  45. Subbarao SN, Yun YH, Kershaw R, Dwight K, Wold A (1979) Electrical and optical-properties of the system TiO2 - x Fx. Inorg Chem 18:488–492

    Google Scholar 

  46. Hattori A, Yamamoto M, Tada H, Ito S (1998) A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chem Lett 27:707–708

    Google Scholar 

  47. Yamaki T, Sumita T, Yamamoto S (2002) Formation of TiO2 - xFx compounds in fluorine-implanted TiO2. J Mater Sci Lett 21:33–35

    Google Scholar 

  48. Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413

    Google Scholar 

  49. Lakshmi BB, Dorhout PK, Martin CR (1997) Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862

    Google Scholar 

  50. Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2975

    Google Scholar 

  51. Michailowski A, Al-Mawlwai D, Cheng GS, Moskovits M (2001). Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5

    Google Scholar 

  52. Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T (2002) A novel method for preparation of nanocrystalline rutile TiO2 powders by liquid hydrolysis of TiCl4. Chem Mater 14:1445–1447

    Google Scholar 

  53. Kobayashi S, Hamasaki N, Suzuki M, Kimura N, Shirai H, Hanabusa K (2002) Preparation of helical transition-metal Oxide tubes using organogelators as structure-directing agents. J Am Chem Soc 124:6550–6551

    Google Scholar 

  54. Tian ZR, Voigt JA, Liu J, McKenzie B, Xu HF (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385

    Google Scholar 

  55. Kasuga T, Hiramatsu M, Hoson A, Sekino T Niihara K (1998) Formation of titanium oxide nanotubes. Langmuir 14:3160–3163

    Google Scholar 

  56. Chen Q, Zhou WZ, Du GH, Peng LH (2002) Trititanate nanotubes made via a single alkali treatment Adv Mater 14:1208–1211

    Google Scholar 

  57. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283

    Google Scholar 

  58. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotubes array prepared by anodic oxidation. J Mater Res 16:3331–3334

    Google Scholar 

  59. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotube. J Mater Res 18:2588–2593

    Google Scholar 

  60. Cai QY, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotubes array by anodic oxidation. J Mater Res 20:230–236

    Google Scholar 

  61. Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) Fabrication of highly ordered TiO2 nanotube array using an organic electrolyte. J Phys Chem B 109:15754–15759

    Google Scholar 

  62. Macak JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes. Angew. Chem. Int. Ed. 44:2100–2102

    Google Scholar 

  63. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7466

    Google Scholar 

  64. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μ m in length. J Phys Chem 110:16179–16184

    Google Scholar 

  65. Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TA, Grimes CA (2006) Initial studies on the hydrogen gas sensing properties of highly ordered high aspect ratio TiO2 nanotube-arrays 20 μ m to 222 μ m in length. Sensor Lett 4:334–339

    Google Scholar 

  66. Liu SM, Gan LM, Liu LH, Zhang WD, Zeng HC (2002) Synthesis of single-crystalline TiO2 nanotubes. Chem Mater 14:1391–1397

    Google Scholar 

  67. Lee S, Jeon C, Park Y (2004) Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor. Chem Mater 16:4292–4295

    Google Scholar 

  68. Cheng B, Samulski ET (2001) Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J Mater Chem 11:2901–2902

    Google Scholar 

  69. Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application. Chem Mater 17:3899–3903

    Google Scholar 

  70. Zhu W, Wang W, Xu H, ShiJ (2006) Fabrication of ordered SnO2 nanotube arrays via a template route. Mater Chem Phys 99:127–130

    Google Scholar 

  71. Nakamura H, Matsui Y (1995) The preparation of novel silica gel hollow tubes. Adv Mater 7:871–872

    Google Scholar 

  72. Ono Y, kanekiyo Y, Inoue K, Hojo J, Shinkai S (1999) Evidence for the Importance of a cationic charge in the formation of hollow fiber silica from an organic gel system. Chem Lett 28:23–24

    Google Scholar 

  73. Jung JH, Ono Y, Hanabusa K, Shinkai S (2000) Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivative. J Am Chem Soc 122:5008–5009

    Google Scholar 

  74. Tamaru S, Takeuchi M, Sano M, Shinkai S (2002) Sol-gel transcription of sugar-appended porphyrin assemblies into fibrous silica: unimolecular stacks versus helical bundles as templates. Angew Chem Int Ed 41:853–856

    Google Scholar 

  75. Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H (2000) Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem Mater 12:1523–1525

    Google Scholar 

  76. Hanabusa K, Numazawa T, Kobayashi S, Suzuki M, Shirai H (2006) Preparation of metal oxide nanotubes using gelators as structure-directing agents. Macromol Symp 235:52–56

    Google Scholar 

  77. Gundiah G, Mukhopadhyay S, Tumkurkar UG, Govindaraj A, Maitra U, Rao CNR (2003) Hydrogel route to nanotubes of metal oxides and sufates. J Mater Chem 13:2118–2122

    Google Scholar 

  78. Ogihara H, Sadakane M, Nodasaka Y, Ueda W (2006) Shape-controlled synthesis of ZrO2, Al2O3 and SiO2 nanotubes using carbon nanofibers as templates. Chem Mater 21:4981–4983

    Google Scholar 

  79. Adachi M, Harada T, Harada M (1999) Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane System. Langamuir 15:7097–7100

    Google Scholar 

  80. Wang L, Tomura S, Ohashi F, Maeda M, Suzuki, Inukai K (2001) Synthesis of single silica nanotubes in the presence of citric acid J Mater. Chem. 11:465–468

    Google Scholar 

  81. Ajayan PM, Stephane O, Redlich P, Colliex C (1995) Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375:564–566

    Google Scholar 

  82. Satishkumar BC, Govindaraj AG, Vogl EM, Basumallick L, Rao CNR (1997) Oxide nanotubes prepared using carbon nanotubes as templates. J Mater Res 12:604–606

    Google Scholar 

  83. Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 1–24

    Google Scholar 

  84. Archibald DD, Mann S (1993) Template mineralization of self-assembled anisotropic lipid microstructures. Nature 364:430–432

    Google Scholar 

  85. Chen J, Xu L, Li W, Gou X (2005) α -Fe2O3 nanotubes in gas sensor and lithium ion battery applications. Adv Mater 17:582–586

    Google Scholar 

  86. Sun Z, Yuan H, Liu Z, Han B, Zhang X (2005) A highly efficient chemical sensor material for H2S: α -Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater 17:2993–2997

    Google Scholar 

  87. Liu L, Kou HZ, Mo W, Liu H, Wang Y (2006) Surfactant assisted synthesis of α -Fe2O3 nanotubes and nanorods with shape dependent magnetic properties. J Phys Chem B 110:15218–15223

    Google Scholar 

  88. Liu Z, Zhang D, Han S, Li C, Lei B, Lu W, Fang J, Zhou C (2005) Single crystalline magnetite nanotube. J Am Chem Soc 127:6–7

    Google Scholar 

  89. Seo DS, Lee JK, Kimb H (2001) Preparation of nanotube-shaped TiO2 powder. J Crys Gro 229:428–432

    Google Scholar 

  90. Du GH, Chen Q, Che RC, Yuan ZY, Peng LM (2001) Preparation and structural analysis of titanium oxide nanotubes. Apl Phys Lett 79:3702–3704

    Google Scholar 

  91. Yuan ZY, Zhou W, Su BL (2002) Hierarchical interlinked structure of titanium oxide nanofibers. Chem Commun 1202–1203

    Google Scholar 

  92. Zhang Q, Gao L, Sun J, Zheng S (2002) Preparation of long TiO2 nanotubes from ultrafine rutile crystals. Chem Lett 31:226–227

    Google Scholar 

  93. Tsai CC, Teng H (2004) Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. Chem Mater 16:4352–4358

    Google Scholar 

  94. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377

    Google Scholar 

  95. Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, PangYC, Zhang Z, Yan CH (2005) Single-crystalline iron oxide nanotubes. Angew Chem Int ed 44:4328–4333

    Google Scholar 

  96. Li Q, Kumar V, Li Y, Zhang H, Marks TJ, Chang RPH (2005) Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater 17:1001–1006

    Google Scholar 

  97. Shankar K, Paulose M, Mor GK, Varghese OK, Grimes CA (2005) A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays. J Phys D 38:3543–3549

    Google Scholar 

  98. Shankar K, Tep KC, Mor GK, Grimes CA (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: Modification of bandgap and photoelectrochemical properties. J Phys D 39:2361–2366

    Google Scholar 

  99. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Google Scholar 

  100. Mor GK, Varghese OK, Paulose M, Grimes CA (2003) A Self-cleaning room temperature titania-nanotube hydrogen gas sensor. Sens Lett 1:42–46

    Google Scholar 

  101. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Solar Energy Materials & Solar Cells 90:2011–2075

    Google Scholar 

  102. Ruan C, Paulose M, Varghese OK, Grimes CA (2006) Enhanced photoelectrochemical response in highly ordered TiO2 nanotube arrays anodized in boric acid containing electrolyte. Solar Energy Materials & Solar Cells 90:1283–1295

    Google Scholar 

  103. Mor GK, Varghese OK, Paulose M, Grimes CA (2005) Transparent highly-ordered TiO2 nanotube-arrays via anodization of titanium thin films. Adv Funct Mater 15:1291–1296

    Google Scholar 

  104. Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA (2006) Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photochem Photobiol A 178:8–15

    Google Scholar 

  105. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1991) Structure and physicochemistry of anodic oxide filmes on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Google Scholar 

  106. Delplancke JL, Winand R (1998) Galvanostatic anodization of titanium. II. Reactions efficiencies and electrochemical behaviour model. Electrochim Acta 33:1551–1559

    Google Scholar 

  107. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346

    Google Scholar 

  108. Hwang BJ, Hwang JR (1993) Kinetic model of anodic oxidation of titanium in sulphuric acid. J Appl Electrochem 23:1056–1062

    Google Scholar 

  109. Parkhutik VP, Shershulsky VI (1992) Theoretical modelling of porous oxide growth on aluminium. J Phys D 25:1258–1263

    Google Scholar 

  110. Thompson GE (1997) Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films 297:192–201

    Google Scholar 

  111. Chen S, Paulose M, Ruan C, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol 177:177–184

    Google Scholar 

  112. Melody B, Kinard T, Lessner P (1998) The non-thickness-limited growth of anodic oxide films on valve metals. Electrochem. Solid-State Lett 1:126–129

    Google Scholar 

  113. Li YM, Young L (2001) Non-thickness-limited growth of anodic oxide films on tantalum. J Electrochem Soc 148:B337-B342

    Google Scholar 

  114. Izutsu K (2002) Electrochemistry in nonaqueous solutions, Wiley-VCH

    Google Scholar 

  115. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2.Science 297:2243–2245

    Google Scholar 

  116. Noworyta K, Augustynski J (2004) Spectral photoresponses of carbon-doped TiO2 film electrodes. Electrochem Solid-State Lett 7:E31-E33

    Google Scholar 

  117. Lee JY, Park J, Cho JH (2005) Electronic properties of N- and C-doped TiO2. Appl Phys Lett 87:011904–3

    Google Scholar 

  118. Chen XB, Lou YB, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv Funct Mater 15:41–49

    Google Scholar 

  119. Wu PG, Ma CH, Shang JK (2005) Effects of nitrogen doping on optical properties of TiO2 thin films. Appl Phys A 81:1411–1417

    Google Scholar 

  120. Suda Y, Kawasaki H, Ueda T, Ohshima T (2005) Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films 475: 337–341

    Google Scholar 

  121. Liu Y, Alwitt RS, Shimizu K (2000) Cellular porous anodic alumina grown in neutral organic electrolyte-I. Structure, composition, and properties of the films. J Electrochem Soc 147:1382–1387

    Google Scholar 

  122. Gerischer H, Lubke M (1986) A particle-size effect in the sensitization of TiO2 electrodes by a CdS deposit. J Electroanal Chem 204:225–227

    Google Scholar 

  123. Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, AgzS, Sb&, and Bi& particles as sensitizers for various nanoporous wide- bandgap semiconductors. J Phys Chem 98:3183–3188

    Google Scholar 

  124. Pandey RK, Sahu SN, Chandra S (1996) Handbook of Semiconductor Electrodeposition, Marcel Decker, New York

    Google Scholar 

  125. Varghese OK, Gong DW, Paulose M, Grimes CA, Dickey EC (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18: 156–165

    Google Scholar 

  126. Marino CEB, Nascente PAP, Biaggio SR, Rocha-Filho RC, Bocchi N (2004) XPS characterization of anodic titanium oxide films grown in phosphate buffer solutions. Thin Solid Films 468:109–112

    Google Scholar 

  127. Yakovleva NM, Anicai L, Yakovlev AN, Dima L, Khanina EY, Buda M, Chupakhina EA (2002) Structural study of anodic films formed on aluminum in nitric acid electrolyte. Thin Solid Films 416:16–23

    Google Scholar 

  128. Augustynski J, Berthou H, Painot J (1976) XPS study of interactions between aluminum metal and nitrate ions. Chem Phys Lett 44:221–224

    Google Scholar 

  129. Parhutik VP, Makushok IE, Kudriavtsev E, Sokol VA, Khodan AN (1987) An X-ray electronic study of the formation of anodic oxide films on aluminium in nitric acid. Electrochemistry (Elektrokhymia) 23:1538–1544

    Google Scholar 

  130. Kundu M, Khosravi AA, Kulkarni SK (1997) Synthesis and study of organically capped ultra small clusters of cadmium sulphide. J Mater Sci 32:245–258

    Google Scholar 

  131. Ong KG, Varghese OK, Mor GK, Grimes CA (2005) Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption. J Nanosci Nanotechnol 5:1801–1808

    Google Scholar 

  132. Mor GK, Shankar K, Varghese OK, Grimes CA (2004) Photoelectrochemical properties of titania nanotubes. J Mater Res 19:2989–2996

    Google Scholar 

  133. Asanuma T, Matsutani T, Liu C, Mihara T, Kiuchi M (2004) Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma. J Appl Phys 95:6011–6016

    Google Scholar 

  134. Manifacier JC, Gasiot J, Fillard JP (1976) A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J Phys E 9:1002–1004

    Google Scholar 

  135. Vogel R, Meredith P, Kartini I, Harvey M, Riches JD, Bishop A, Heckenberg N, Trau M, Dunlop HR (2003) Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications. Chem Phys Chem 4:595–603

    Google Scholar 

  136. Yoldas BE, Partlow PW (1985) Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films 129:1–14

    Google Scholar 

  137. Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5:721–729

    Google Scholar 

  138. Sant PA, Kamat PV (2002) Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4:198–203

    Google Scholar 

  139. Kokai J, Rakhshani AE (2004) Photocurrent spectroscopy of solution-grown CdS films annealed in CdCl2 vapour. J Phys D 37:1970–1975

    Google Scholar 

  140. Lubberhuizen WH, Vanmaekelbergh D, Van Faassen E (2000) Recombination of photogenerated charge carriers in nanoporous gallium phosphide. J Porous Mater 7:147–152

    Google Scholar 

  141. Marin FI, Hamstra MA, Vanmaekelbergh D (1996) Greatly enhanced sub-bandgap photocurrent in porous GaP photoanodes. J Electrochem Soc 143:1137–1142

    Google Scholar 

  142. Vanmaekelbergh D, de Jongh PE (1999) Driving force for electron transport in porous nanostructured photoelectrodes. J Phys Chem B 103:747–750

    Google Scholar 

  143. Hamnett A (1980) General discussions. Faraday Discuss Chem Soc 70:124–127

    Google Scholar 

  144. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Google Scholar 

  145. Ong KG, Varghese OK, Mor GK, Grimes CA (2007) Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption. Solar Energy Materials & Solar Cells 91:250–257

    Google Scholar 

  146. Aroutiounian, V.M.; Arakelyan, V.M.; Shannazaryan, G.E.; Stepanyan, G.M.; Turner, J.A.; Khaselev, O. (2002) Investigation of ceramic Fe2O3photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energy 27:33–38

    Google Scholar 

  147. Beermann, N.; Vayssieres, L.; Lindquist, S.-Eric; Hagfieldt, A. (2000) Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147:2456–2461

    Google Scholar 

  148. Morin, F.J. (1954) Electrical properties of α - Fe2O3. Phys. Rev. 93:1195–1199

    Google Scholar 

  149. Gardner, R.F.G.; Sweett, F.; Tanner, D.W. (1963) The electrical properties of alpha ferric oxide—II. Ferric oxide of high purity. J. Phys.Chem. Solids 24:1183–1186

    Google Scholar 

  150. Sato, N. (1998) Electrochemistry at Metal and Semi-conductor Electrodes; Elsevier; Amsterdam, pg 34

    Google Scholar 

  151. Murphy, A.B.; Barnes, P.R.F.; Randeniya, L.K.; Plumb, I.C.; Grey, I.E.; Horne, M.D.; Glasscock, J.A. (2006) Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31:1999–2017

    Google Scholar 

  152. Grätzel, M. (2001) Photoelectrochemical cells. Nature 414:338–344

    Google Scholar 

  153. Kennedy, J. H.; Frese, J. K. W. (1978) Photooxidation of water at α - Fe2O3electrodes. J. Electrochem. Soc. 125: 709–714

    Google Scholar 

  154. Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G.(2006) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17:398–402. Varghese, O. K.; Yang, X.; Kendig, J.; Paulose, M.; Zeng, K.; Palmer, C.; Ong, K. G.; Grimes, C. A. (2006) A transcutaneous hydrogen sensor: From design to application. Sensor Letters 4:120–128

    Google Scholar 

  155. Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Grimes, C. A. (2003) Hydrogen sensing using titania nanotubes. Sensors Actuators B, 93:338–344

    Google Scholar 

  156. Mor, G. K.; Varghese, O. K.; Paulose, M.; Grimes, C. A. (2003) A self-cleaning, room-temperature titania nanotube hydrogen gas sensor. Sensor Letters 1:42–46

    Google Scholar 

  157. Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Paulose, M.; Pishko, M. V.; Grimes, C. A. (2004) A room-temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Materials Research 19:628–634

    Google Scholar 

  158. Varghese, O. K.; Mor, G. K.; Grimes, C.A.; Paulose, M.; Mukherjee, N. (2004) A titania nanotube array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechn. 4:733–737

    Google Scholar 

  159. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. (2006) Use of highly ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters 6:215–218

    Google Scholar 

  160. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters 7:69–74

    Google Scholar 

  161. Melody, B.; Kinard, T.; Lessner, P. (1998) The non-thickness-limited growth of anodic oxide films on valve metals. Electrochem. Solid-State Lett. 1:126–129

    Google Scholar 

  162. Krembs, G.M. (1963) Residual tritiated water in anodized tantalum films. J. Electrochem. Soc. 110:938–940

    Google Scholar 

  163. Varghese, O. K.; Paulose, M.; Gong, D.; Grimes, C. A.; Dickey, E. C. (2003) Crystallization and high temperature structural stability of titanium oxide nanotube arrays. J. Materials Research 18:156–165

    Google Scholar 

  164. Gennari, F.C.; Pasquevich, D.M. (1998) Kinetics of the anatase rutile transformation in TiO2 in the presence of Fe2O3. J. Mater. Sci. 33:1571–1578

    Google Scholar 

  165. Wang, R.; Sakai, R.; Fujishima, A.; Watanabe, T.; Hashimoto, K. (1999) Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 103:2188–2194

    Google Scholar 

  166. Dghoughi, L.; Elidrissi, B.; Berne‘de, C.; Addou, M.; Lamrani, M.A.; Regragui, M.; Erguig H. (2006) Physicochemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Appl. Surf. Sci. 253:1823–1829

    Google Scholar 

  167. Heimer, T.A.; Heilweil, E.J.; Bignozzi, C.A.; Meyer, G.J. (2000) Electron injection, recombination, and halide oxidation dynamics at dye-sensitized metal oxide interfaces. J. Phys. Chem. A 104:4256–4262

    Google Scholar 

  168. Grimes, C. A. (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chemistry 17:1451–1457

    Google Scholar 

  169. Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. (2007) Vertically Oriented Ti-Fe-O Nanotube Array Films: Towards a Useful Material Architecture for Solar Spectrum Water Photolysis. Nano Letters DOI: 7:2356–2364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grimes, C.A., Varghese, O.K., Ranjan, S. (2008). Oxide Semiconductors Nano-Crystalline Tubular and Porous Systems. In: Grimes, C.A., Varghese, O.K., Ranjan, S. (eds) Light, Water, Hydrogen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68238-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68238-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33198-0

  • Online ISBN: 978-0-387-68238-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics