Skip to main content

Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Adaptation:

An adaptation is an adjustment made in response to an actual or expected climate that moderates or avoids harmful impacts. Adaptation can be divided into incremental and transformational actions. Incremental adaptation refers to relatively small changes and actions that affect a system while maintaining its integrity, while transformational adaptation includes changes and actions that affect the fundamental attributes of a system [10].

Air Pollution:

Air pollution is “a mix of particles and gases that can reach harmful concentrations both outside and indoors” [12]. Determining the harmfulness of substances is not always straightforward. For example, some substances that are toxic have been found to have beneficial effects in low quantities [13], while for others there may be no safe dose. A pertinent example is that carbon dioxide is a natural part of the atmosphere and is exchanged with the biosphere via photosynthesis thus fertilizing plants but clearly there...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Arrhenius S (1896) XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. Lond Edinb Dublin Philos Mag J Sci 41(251):237–276

    Article  CAS  Google Scholar 

  2. Tomas N, Per-Anders E (eds) (2013) Pathways to a low-carbon economy: Version 2 of the global greenhouse gas abatement cost curve, McKinsey & Company. https://www.mckinsey.com.

  3. The Bloomberg New Energy Finance, A fresh look at the costs of reducing US carbon emissions (2010) Carbon Markets-North America-Research Note. https://about.bnef.com/blog/us-mac-curve-a-fresh-look-at-the-costs-of-reducing-us-carbon-emissions/

  4. Field CB, Barros VR, Mach KJ, Mastrandrea MD, van Aalst RA, Adger WN, Arent DJ, Barnett J, et al. (2014) Technical summary. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the IPCC. Cambridge University Press

    Google Scholar 

  5. Harnung SE, Johnson MS (2012) Chemistry and the environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Trenberth KE, Fasullo J, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311–324

    Article  Google Scholar 

  7. Stephens GL et al (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691

    Article  CAS  Google Scholar 

  8. Hodnebrog Ø et al (2013) Global warming potentials and radiative efficiencies of halocarbons and related compounds: a comprehensive review. Rev Geophys 51(2):300–378

    Article  Google Scholar 

  9. UNFCCC (2009) Kyoto protocol reference manual on accounting of emissions and assigned amount. eSocialSciences

    Google Scholar 

  10. Stocker TF (ed) (2013) IPCC in climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  11. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613

    Article  CAS  Google Scholar 

  12. Nunez C. Climate 101: air pollution. Air pollution, facts and information. [Online]. Available: https://www.nationalgeographic.com/environment/global-warming/pollution/

  13. Elliott K (2011) Is a little pollution good for you?: incorporating societal values in environmental research. Oxford University Press, Oxford

    Book  Google Scholar 

  14. Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, Hoboken

    Google Scholar 

  15. Crutzen P (2002) Geology of mankind. Nature 415(6867):23

    Article  CAS  Google Scholar 

  16. Carrington D (2016) The Anthropocene epoch: scientists declare dawn of human-influenced age. The Guardian 29(8). http://re4221.com/wp-content/uploads/2017/01/Carrington-2016-The-Anthropocene-epoch_scientists-declare-dawn-of-human-influenced-age.pdf

  17. Hansen J, Ruedy R, Sato M, LO K (2010) Global surface temperature change. Rev Geophys 48(4):RG4004

    Article  Google Scholar 

  18. GISTEMP Team (2019) 2019: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies, USA

    Google Scholar 

  19. Pachauri RK et al (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  20. Keeling CD et al (2001) Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects. SIO Reference No. 01–06 pp 1–28

    Google Scholar 

  21. Keeling RF, Stephen CP, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381(6579):218

    Article  CAS  Google Scholar 

  22. Sirignano C, Neubert REM, Rödenbeck C, Meijer HAJ (2010) Atmospheric oxygen and carbon dioxide observations from two European coastal stations 2000–2005: continental influence, trend changes and APO climatology. Atmos Chem Phys 10(4):1599–1615

    Article  CAS  Google Scholar 

  23. Boden TA, Marland G, Andres RJ (2009) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

    Book  Google Scholar 

  24. Manning A, Keeling RF (2006) Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus Ser B Chem Phys Meteorol 58(2):95–116

    Article  Google Scholar 

  25. Severinghaus JP (1995) Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2. Oak Ridge Associated Universities, Oak Ridge

    Google Scholar 

  26. Manning AC (2001) Temporal variability of atmospheric oxygen from both continuous measurements and a flask sampling network: Tools for studying the global carbon cycle. University of California, San Diego

    Google Scholar 

  27. Shaw T et al (2016) Storm track processes and the opposing influences of climate change. Nat Geosci 9(9):656–664

    Article  CAS  Google Scholar 

  28. Gaetani M, Baldi M, Dalu GA, Maracchi G (2011) Jetstream and rainfall distribution in the Mediterranean region. Nat Hazards Earth Syst Sci 11(9):2469–2481

    Article  Google Scholar 

  29. Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7(19):5229–5236

    Article  CAS  Google Scholar 

  30. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD (2013) Observations: Ocean. In, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, GB. Cambridge University Press, pp. 106

    Google Scholar 

  31. Stouffer RJ et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387

    Article  Google Scholar 

  32. Bardi U (2009) Peak oil: the four stages of a new idea. Energy 34(3):323–326

    Article  Google Scholar 

  33. Khatiwala S et al (2013) Global ocean storage of anthropogenic carbon. Biogeosciences 10(4):2169–2191

    Article  CAS  Google Scholar 

  34. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1(1):169–192

    Article  Google Scholar 

  35. Bardi U (2011) The limits to growth revisited. Springer Science & Business Media, New York

    Book  Google Scholar 

  36. Trenberth K (2011) Changes in precipitation with climate change. Clim Res 47(1):123–138

    Article  Google Scholar 

  37. Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51

    Google Scholar 

  38. Zimov SA, Schuur EAG, Chapin SF III (2006) Permafrost and the global carbon budget. Science 312(5780):1612–1613

    Article  CAS  Google Scholar 

  39. Brown J, Romanovsky VE (2008) Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century. Permafr Periglac Process 19(2):255–260

    Article  Google Scholar 

  40. Barnosky AD et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336):51–57

    Article  CAS  Google Scholar 

  41. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1(5):e1400253

    Article  Google Scholar 

  42. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity: biodiversity and climate change. Ecol Lett 15(4):365–377

    Article  Google Scholar 

  43. Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  44. Krishna Bahadur KC et al (2018) When too much isn’t enough: does current food production meet global nutritional needs? PLoS One 13(10):e0205683

    Article  CAS  Google Scholar 

  45. Gregory PJ, Ingram JS, Brklacich M (2005) Climate change and food security. Philos Trans R Soc B Biol Sci 360(1463):2139–2148

    Article  CAS  Google Scholar 

  46. Sustainable Development Goals. UNDP, www.undp.org/content/undp/en/home/sustainable-development-goals.html

  47. Woodward A et al (2014) Climate change and health: on the latest IPCC report. Lancet 383(9924):1185–1189

    Article  Google Scholar 

  48. Smil V (2017) Energy and civilization: a history. MIT Press, Cambridge

    Book  Google Scholar 

  49. Dudley B (2015) BP statistical review of world energy 2016. British Petroleum Company, London

    Google Scholar 

  50. Hirsch RL, Bezdek RM, Wendling RM (2005) Peaking of world oil production: impacts, mitigation, & risk management. National Energy Technology Laboratory (NETL), Pittsburgh/Morgantown/Albany, No. DOE/NETL-IR-2005-093; NETL-TPR-2319

    Google Scholar 

  51. Zenghelis D (2006) Stern review: the economics of climate change. HM Treasury, London

    Google Scholar 

  52. Luderer G et al (2014) The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Clim Chang 123(3–4):427–441

    Article  Google Scholar 

  53. United Nations. Goal 13: take urgent action to combat climate change and its impacts. [Online]. Available: https://www.un.org/sustainabledevelopment/climate-change-2/. Accessed 22 Mar 2019

  54. United Nations Development Programme. Goal 13: climate action. [Online]. Available: http://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-13-climate-action.html. Accessed 22 Mar 2019

  55. Jevons WS (1906) The Coal Question (reprint of the third edition-1906). Augustus M. Kelley: New York (1865)

    Google Scholar 

  56. York R (2006) Ecological paradoxes: William Stanley Jevons and the paperless office. Hum Ecol Rev 13:143–147

    Google Scholar 

  57. Sorrell S (2009) Jevons’ paradox revisited: the evidence for backfire from improved energy efficiency. Energy Policy 37(4):1456–1469

    Article  Google Scholar 

  58. Wilson EO (1992) The diversity of life. Harvard University Press, Cambridge

    Google Scholar 

  59. Hettinger N (2012) Nature restoration as a paradigm for the human relationship with nature. In: Thompson A, Bendik-Keymer J (eds) Ethical adaptation to climate change: human virtues of the future. MIT Press, Cambridge, MA/London, pp 243–244

    Google Scholar 

  60. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494

    Article  CAS  Google Scholar 

  61. Boivin NL et al (2016) Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci 113(23):6388

    Article  CAS  Google Scholar 

  62. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115(25):6506

    Article  CAS  Google Scholar 

  63. European Commission (2011) Our life insurance, our natural capital: an EU biodiversity strategy to 2020, Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions COM(2011) 244 final. European Commission, Brussels

    Google Scholar 

  64. SER (2004) The SER primer on ecological restoration. Society for Ecological Restoration, Science and Policy Working Group. [Online]. Available: www.ser.org

  65. Higgs E (2003) Nature by design: people, natural process and ecological restoration. Massachusetts Institute of Technology: MIT Press, Cambridge

    Book  Google Scholar 

  66. Elliot R (2003) Faking nature. In: Environmental ethics: an anthology. Blackwell, Oxford, pp 381–389

    Google Scholar 

  67. Throop W (2000) Environmental restoration: ethics, theory, and practice, vol 11. Humanity Books, Amherst

    Google Scholar 

  68. Duarte C, Losada IJ, Hendriks I, Mazarrasa I, Marba N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3(11):961–968

    Article  CAS  Google Scholar 

  69. Shue H (2017) Mitigation: first imperative of environmental ethics. In: The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press, Oxford, pp 465–473

    Google Scholar 

  70. Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14(2):170–176

    Article  Google Scholar 

  71. Light A (2012) The death of restoration? In: Ethical adaptation to climate change: human virtues of the future. MIT Press, Cambridge

    Google Scholar 

  72. Fahrig L (2001) How much habitat is enough? Biol Conserv 100(1):65–74

    Article  Google Scholar 

  73. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32

    Article  Google Scholar 

  74. Asdal Å, Guarino L (2018) The Svalbard global seed vault: 10 years – 1 million samples. Biopreserv Biobank 16(5):391–392

    Article  Google Scholar 

  75. Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28(8):482–488

    Article  Google Scholar 

  76. Thompson A (2012) Ethical adaptation to climate change: human virtues of the future. MIT Press, Cambridge

    Book  Google Scholar 

  77. Gardiner SM, Perfect Moral A (2011) Storm: the ethical tragedy of climate change. Oxford University Press, Oxford, UK

    Google Scholar 

  78. Vanderheiden S (2008) Atmospheric justice: a political theory of climate change. Oxford University Press, Oxford

    Book  Google Scholar 

  79. Gardiner S (2011) Is no one responsible for global environmental tragedy? Climate change as a challenge to our ethical concepts. In: Arnold D (ed) The ethics of global climate change. Cambridge University Press, Cambridge, pp 38–59

    Chapter  Google Scholar 

  80. Shue H, Gardiner SM, Caney S, Jamieson D (2019) Climate ethics: essential readings. Oxford University Press, Oxford, UK

    Google Scholar 

  81. Gardiner SM (2012) Are we the scum of the earth? Climate change, geoengineering, and humanity’s challenge. In: Ethical adaptation to climate change: human virtues of the future. MIT Press, Cambridge, MA/London, p 2430244

    Google Scholar 

  82. Wienhues A (2018) Life in common: distributive ecological justice on a shared earth. University of Manchester

    Google Scholar 

  83. Shue H (2011) Human rights, climate change, and the trillionth ton. In: The ethics of global climate change. Cambridge University Press, Cambridge

    Google Scholar 

  84. Gardiner SM (2006) A perfect moral storm: climate change, intergenerational ethics and the problem of moral corruption. Environ Values 15(3):397–413

    Article  Google Scholar 

  85. Caney S (2005) Cosmopolitan justice, responsibility, and global climate change. Leiden J Int Law 18(4):747–775

    Article  Google Scholar 

  86. Moellendorf D (2009) Treaty norms and climate change mitigation. Ethics Int Aff 23(3):247–265

    Article  Google Scholar 

  87. Shue H (1993) Subsistence emissions and luxury emissions. Law Policy 15(1):39–60

    Article  Google Scholar 

  88. Vanderheiden S (2011) Globalizing responsibility for climate change. Ethics Int Aff 25(1):65–84

    Article  Google Scholar 

  89. Shue H (1992) Chapter 14: The unavoidability of justice. In: Hurrell A, Kingsbury B (eds) The international politics of the environment: actors, interests, and institutions. Clarendon Press, Oxford/New York, pp 373–397

    Google Scholar 

  90. Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–1248

    Article  CAS  Google Scholar 

  91. Johnson LB (2003) Ethical obligations in a tragedy of the commons. Environ Values 12(3):271–287

    Article  Google Scholar 

  92. Soroos MS (1997) The endangered atmosphere: preserving a global commons. University of South Carolina Press, Columbia

    Google Scholar 

  93. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, New York

    Book  Google Scholar 

  94. Sinnott-Armstrong W (2005) It’s not my fault: global warming and individual moral obligations. In Perspectives on climate change: Science, economics, politics and ethics, advances in the economics of environmental resources, Edited by: Sinnott-Armstrong, W and Howarth, RB. 4:285–307. Amsterdam: Elsevier

    Google Scholar 

  95. Johnson B (2011) The possibility of a joint communique: my response to Hourdequin. Environ Values 20(2):147–156

    Article  Google Scholar 

  96. Hedberg T (2018) Climate change, moral integrity, and obligations to reduce individual greenhouse gas emissions. Ethics Policy Environ 21(1):64–68

    Article  Google Scholar 

  97. Hourdequin M (2011) Climate change and individual responsibility: a reply to Johnson. Environ Values 20(2):157–162

    Article  Google Scholar 

  98. Shue H (1999) Global environment and international inequality. Int Aff 75:531–545

    Article  Google Scholar 

  99. Singer P (2002) One world: the ethics of globalization. Yale University Press, New Haven

    Google Scholar 

  100. Gardiner SM (2011) Some early ethics of geoengineering the climate: a commentary on the values of the Royal Society Report. Environ Values 20(2):163–188

    Article  Google Scholar 

  101. Jamieson D (1996) Ethics and intentional climate change. Clim Chang 33(3):323–336

    Article  Google Scholar 

  102. Crutzen PJ (2006) The “Anthropocene”. In: Ehlers E, Krafft T (eds) Earth system science in the Anthropocene. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 13–18

    Chapter  Google Scholar 

  103. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Cambridge

    Google Scholar 

  104. Di Gianfrancesco A (2016) Materials for ultra-supercritical and advanced ultra-supercritical power plants. Woodhead Publishing, Oxford

    Google Scholar 

  105. Bert M, Ogunlade D, Heleen DC, Manuela L, Leo M. IPCC special report on carbon dioxide capture and storage. UK: Cambridge University Press

    Google Scholar 

  106. Miller B, Tillman D (2008) Combustion engineering issues for solid fuel systems. Academic, Amsterdam

    Google Scholar 

  107. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Postcombustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89(9):1609–1624

    Article  CAS  Google Scholar 

  108. Samanta A, Zhao A, Shimizu G, Sarkar P, Gupta R (2011) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51(4):1438–1463

    Article  CAS  Google Scholar 

  109. Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359(1–2):126–139

    Article  CAS  Google Scholar 

  110. Nielsen CJ, Herrmann H, Weller C (2012) Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 41(19):6684–6704

    Article  CAS  Google Scholar 

  111. Milner PJ et al (2017) A diaminopropane-appended metal-organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism. J Am Chem Soc 139(38):13541–13553

    Article  CAS  Google Scholar 

  112. Mason JA, Sumida K, Herm ZR, Krishna R, Long JR (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4(8):3030–3040

    Article  CAS  Google Scholar 

  113. Stanger R et al (2015) Oxyfuel combustion for CO2 capture in power plants. Int J Greenh Gas Control 40:55–125

    Article  CAS  Google Scholar 

  114. Blunt M (2010) Carbon dioxide storage[J]. Grantham Institute Briefing Paper, 4

    Google Scholar 

  115. Huijgen WJJ, Comans RNJ (2003) Carbon dioxide sequestration by mineral carbonation. Literature review, Energy Research Centre of the Netherlands, No. ECN-C--03-016

    Google Scholar 

  116. Snæbjörnsdóttir SÓ, Gislason S (2016) CO2 storage potential of basaltic rocks offshore Iceland. Energy Procedia 86:371–380

    Article  CAS  Google Scholar 

  117. Adams E, Caldeira K (2008) Ocean storage of CO2. Elements 4(5):319–324

    Article  CAS  Google Scholar 

  118. Vaughan N, Lenton TM (2011) A review of climate geoengineering proposals. Clim Chang 109(3):745–790

    Article  Google Scholar 

  119. Marcucci A, Kypreos S, Panos E (2017) The road to achieving the long-term Paris targets: energy transition and the role of direct air capture. Clim Chang 144(2):181–193

    Article  Google Scholar 

  120. Lackner KS, Brennan S, Matter JM, Park A-HA, Wright A, van der Zwaan B (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci 109(33):13156–13162

    Article  CAS  Google Scholar 

  121. Irfan U. Methane proves hard to capture. [Online]. Available: https://www.scientificamerican.com/article/methane-proves-hard-to-capture/?fbclid=IwAR0MYaq2S0_YxxrKy0fHl1eDyoItNUR7OEaYBFhp1TtgWVkFRKOFlpYcXVM. Accessed 25 Mar 2019

  122. Rogelj J et al (2016) Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534(7609):631

    Article  CAS  Google Scholar 

  123. Kesicki F, Strachan N (2011) Marginal abatement cost (MAC) curves: confronting theory and practice. J Environ Sci Policy 14:1195–1204

    Article  Google Scholar 

  124. Barthel C, Bunse M, Irrek W, Thomas S (2006) Options and potentials for energy end-use efficiency and energy services. Wuppertal Institute for Climate, Environment and Energy, Wuppertal

    Google Scholar 

  125. Nolt J (2011) How harmful are the average American’s greenhouse gas emissions? Ethics Policy Environ 14:3–10

    Article  Google Scholar 

  126. Nolt J (2011) Greenhouse gas emission and the domination of posterity. In: The ethics of global climate change. Cambridge University Press, Cambridge

    Google Scholar 

  127. Füssel H-M (2007) Adaptation planning for climate change: concepts, assessment approaches and key lessons. Sustain Sci 2(2):265–275

    Article  Google Scholar 

  128. Edenhofer O, Pichs-Madruga R, Sokona Y, Agrawala S, Bashmakov IA, Blanco G, Broome J, Bruckner T, et al. (2014) Summary for policymakers. In: Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5. Cambridge University Press

    Google Scholar 

  129. Stocker, Thomas F., et al. (2013) “Technical summary.” Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press 33–115

    Google Scholar 

  130. Wang J, Huang J, Yang J (2014) Overview of impacts of climate change and adaptation in China’s agriculture. J Integr Agric 13(1):1–17

    Article  Google Scholar 

  131. Schilling J, Freier K, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric Ecosyst Environ 156:12–26

    Article  Google Scholar 

  132. Lenton TM, Vaughan N (2009) The radiative forcing potential of different climate engineering options. Atmos Chem Phys 9(1):5539–5561

    Article  CAS  Google Scholar 

  133. Latham J et al (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philos Trans R Soc Math Phys Eng Sci 366(1882):3969–3987

    Article  Google Scholar 

  134. Twomey SA (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34(7):1149–1154

    Article  Google Scholar 

  135. Latham J (1990) Control of global warming? Nature 347(6291):339–340

    Article  Google Scholar 

  136. Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett 3(2–4):52–58

    Article  Google Scholar 

  137. Webb M (2010) Clouds in the perturbed climate system: their relationship to energy balance, atmospheric dynamics and precipitation, edited by Jost Heintzenberg and Robert J. Charlson. Strüngmann Forum Reports. MIT Press, May 2009. ISBN 978 0 262 01287 4. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography 136(648):827–828

    Google Scholar 

  138. Building Media Inc. CE Center - Cool Roofs for a Hot Planet. Continuing Education Center, https://continuingeducation.bnpmedia.com/courses/durolast-inc/cool-roofs-for-a-hot-planet/2/

  139. Seifritz W (1989) Mirrors to halt global warming? Nature 340:6235

    Article  Google Scholar 

  140. Humphreys D (2011) Smoke and mirrors: some reflections on the science and politics of geoengineering. J Environ Dev 20(2):99–120

    Article  Google Scholar 

  141. MacCracken M (2006) Geoengineering: worthy of cautious evaluation? Clim Chang 77(3):235–243

    Article  Google Scholar 

  142. Kammann C et al (2017) Biochar as a tool to reduce the agricultural greenhouse-gas burden – knowns, unknowns and future research needs. J Environ Eng Landsc Manag 25(2):114–139

    Article  Google Scholar 

  143. Chaturvedi R, Chaturvedi R, Murthy I (2008) Forest conservation, afforestation and reforestation in India: implications for forest carbon stocks. Curr Sci 95(2):216–222

    Google Scholar 

  144. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Chang 61:261–293

    Article  CAS  Google Scholar 

  145. O’Connor D, Ford J (2014) Increasing the effectiveness of the “Great Green Wall” as an adaptation to the effects of climate change and desertification in the Sahel. Sustainability 6(10):7142–7154

    Google Scholar 

  146. Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20(9):915–922

    Article  CAS  Google Scholar 

  147. Kruger T, Cquestrate O (2010) Increasing the Alkalinity of the Ocean to Enhance its Capacity to Act as a Carbon Sink and to Counteract the Effect of Ocean Acidification[J]. https://cseg.ca/assets/files/resources/abstracts/2010/1067_GC2010_Increasing_the_Alkalinity_of_the_Ocean.pdf

  148. Henderson G, Rickaby R, Bouman H (2008) Decreasing atmosphere CO2 by increasing ocean alkalinity. University of Oxford, Department of Earth Sciences and The James Martin 21st Century Ocean Institute

    Google Scholar 

  149. Strong A, Cullen J, Chisholm SW (2009) Ocean fertilization: science, policy, and commerce. Oceanography 22(3):236–261

    Article  Google Scholar 

  150. Smetacek V et al (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487(7407):313–319

    Article  CAS  Google Scholar 

  151. Gosseries A, Meyer LH (2009) Intergenerational justice. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  152. Meyer LH, Roser D (2012) Enough for the future. In: Intergenerational justice. Oxford University Press, Oxford, UK, pp 219–248

    Google Scholar 

  153. Nolt J (2017) Future generations in environmental ethics. In: The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press, New York

    Google Scholar 

  154. Gleeson B, Low N (2002) Justice, society and nature: an exploration of political ecology. Routledge, London

    Google Scholar 

  155. Schlosberg D (2007) Defining environmental justice: theories, movements, and nature. Oxford University Press, Oxford

    Book  Google Scholar 

  156. Thompson A, Light A, Higgs ES (2013) Valuing novel ecosystems. In: Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Chichester, pp 192–204

    Google Scholar 

  157. Knauss S (2018) Conceptualizing human stewardship in the Anthropocene: the rights of nature in Ecuador, New Zealand and India. J Agric Environ Ethics 31(6):703–722

    Article  Google Scholar 

  158. Jamieson D (2008) The rights of animals and the demands of nature. Environ Values 17(2):181–199

    Article  Google Scholar 

  159. Feinberg J (1970) The nature and value of rights. J Value Inq 4(4):243–260

    Article  Google Scholar 

  160. Jamieson D (2011) Energy, ethics, and the transformation of nature. In: The ethics of global climate change. Cambridge University Press, Cambridge

    Google Scholar 

  161. Main sources of carbon dioxide emissions. What’s your impact?, 25 June 2019. [Online]. Available: https://whatsyourimpact.org/greenhouse-gases/carbon-dioxide-emissions

  162. Waters CN et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269):aad2622

    Article  CAS  Google Scholar 

  163. Crutzen PJ (2006) The “Anthropocene”. In: Ehlers E, Krafft T (eds) Earth system science in the Anthropocene. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 13–18

    Chapter  Google Scholar 

  164. Urbano L. The thermal difference between land and water. Montessori Muddle, 25 June 2019. [Online]. Available: http://montessorimuddle.org/2011/08/31/the-thermal-difference-between-land-and-water/

  165. NOAA’s Annual Greenhouse Gas Index (An Introduction). Earth System Research Laboratory Global Monitoring Division, 25 June 2019. [Online]. Available: https://www.esrl.noaa.gov/gmd/aggi/

  166. Scheffers BR et al (2016) The broad footprint of climate change from genes to biomes to people. Science 354(6313):aaf7671

    Article  CAS  Google Scholar 

  167. 17 Goals to Transform Our World. Sustainable Development Goals, 25 June 2019. [Online]. Available: https://www.un.org/sustainabledevelopment/

  168. Sustainable Development Goals: Sustainable Development Knowledge Platform. United Nations, United Nations, https://sustainabledevelopment.un.org/

  169. Interagency Working Group on Climate Change, Health (US) (2010) National Institute of Environmental Health Sciences, Centers for Disease Control, Prevention (US), United States. National Oceanic, and Atmospheric Administration. A Human Health Perspective on Climate Change: A Report Outlining the Research Needs on the Human Health Effects of Climate Change. National Institute of Environmental Health Sciences

    Google Scholar 

  170. Buchanan JM, Stubblebine WC (1962) Externality. Economica 29(116):371–384

    Article  Google Scholar 

  171. Mingle J (2019) The methane detectives: on the trail of a global warming mystery. Undark, Mar 2019. https://undark.org/article/methane-global-warming-climate-change-mystery/

  172. Allan RP, Soden BJ, John VO, Ingram W, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5:025205

    Article  Google Scholar 

  173. Burney J, Ramanathan V (2014) Recent climate and air pollution impacts on Indian agriculture. Proc Natl Acad Sci 111(46):16319–16324

    Article  CAS  Google Scholar 

  174. Callicott JB, Nelson MP (1998) The great new wilderness debate. Athens: University of Georgia Press

    Google Scholar 

  175. Woods M (2017) Rethinking wilderness. Canada: Broadview Press

    Google Scholar 

  176. Leopold A (1925) A plea for wilderness hunting grounds. Outdoor Life 56(5):348–350

    Google Scholar 

  177. Leopold A (1948) A Sand County Almanac. Oxford University Press, New York

    Google Scholar 

  178. Rolston H (1991) Environmental ethics: values in and duties to the natural world. In: Bormann FH, Kellert SR, (eds) Ecology, economics, ethics: the broken circle. USA: Yale University, pp 73–96

    Google Scholar 

  179. Noss RF, LaRoe ET, Scott JM (1995) Endangered ecosystems of the United States: a preliminary assessment of loss and degradation, vol 28. US Department of the Interior, National Biological Service, Washington, DC, pp 1–58

    Google Scholar 

  180. Parfit D (1984) Reasons and persons. Clarendon Press, Oxford

    Google Scholar 

  181. Norton BG (1984) Environmental ethics and weak anthropocentrism. Environ Ethics 6(2):131–148

    Article  Google Scholar 

  182. Nolt J (2017) Future generations in environmental ethics. In: Gardiner SM, Allen T (eds) The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press, New York

    Google Scholar 

  183. Nolt J (2013) Response to critics of “how harmful are the average American’s greenhouse gas emissions?”. Ethics Policy Environ 16(1):1–9

    Article  Google Scholar 

  184. Goodpaster KE (1978) On being morally considerable. J Philos 75(6):308–325

    Article  Google Scholar 

  185. Taylor PW (1986) Respect for nature: a theory of environmental ethics. Princeton University Press, Princeton

    Google Scholar 

  186. Pithan F, Mauritsen T (2014) Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7(3):181–184

    Article  CAS  Google Scholar 

  187. Taylor PC, Cai M, Hu A, Meehl J, Washington W, Zhang GJ (2013) A decomposition of feedback contributions to polar warming amplification. J Clim 26:7023–7043. https://doi.org/10.1175/JCLI-D-12-00696.1

    Article  Google Scholar 

  188. Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V (2018) Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556(7700):191

    Article  CAS  Google Scholar 

  189. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699

    Article  Google Scholar 

  190. Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci 7(10):703

    Article  CAS  Google Scholar 

  191. Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42(1):465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115

    Article  Google Scholar 

  192. http://www.bonnchallenge.org/content/challenge. Retrieved 10 Aug 2019

  193. United Nations (2019) The United Nations General Assembly declare 2021–2030 the UN Decade on Ecosystem Restoration, 8 Apr 2019. https://www.unwater.org/the-united-nations-general-assembly-declare-2021-2030-the-un-decade-on-ecosystem-restoration/. Retrieved 6 Aug 2019

  194. U.S. Army Corps of Engineers (2015) Comprehensive Everglades National Park Restoration Plan. http://www.saj.usace.army.mil/Portals/44/docs/FactSheets/CERP_FS_March2015_revised.pdf. Retrieved 19 Nov 2017

  195. Canadell JG, Schulze ED (2013) Global potential of biospheric carbon management for climate mitigation. Nat Commun (Rev). https://doi.org/10.1038/ncomms6282

  196. https://www.unredd.net/about/what-is-redd-plus.html. Retrieved 12 Aug 2019

  197. Hagel C (2014) Quadrennial defense review. Department of Defense, Washington, DC, 4 Mar 2014

    Google Scholar 

  198. Hofmann DJ, Rosen JM (1980) Stratospheric sulfuric acid layer: evidence for an anthropogenic component. Science 208(4450):1368–1370

    Article  CAS  Google Scholar 

  199. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Chang 77(3):211–220

    Article  CAS  Google Scholar 

  200. Parker W (2017) Environmental science: empirical claims in environmental science. In: The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press, Oxford

    Google Scholar 

  201. Parker W (2018) Climate science. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Summer 2018 Edition). https://plato.stanford.edu/archives/sum2018/entries/climate-science/

  202. Brennan A, Lo Y-S (2016) Environmental ethics. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/ethics-environmental/

  203. Jeffrey R (1956) Valuation and acceptance of scientific hypotheses. Philos Sci 22:237–246

    Article  Google Scholar 

  204. Lacey H (1999) Is science value free? Values and scientific understanding. Routledge, New York

    Google Scholar 

  205. Walker G (2012) Environmental justice: concepts, evidence and politics. Routledge, Oxon

    Book  Google Scholar 

  206. Heyward C (2013) Situating and abandoning geoengineering: a typology of five responses to dangerous climate change. PS: Polit Sci Polit 46(1):23–27. https://doi.org/10.1017/S1049096512001436

    Article  Google Scholar 

  207. Agard J, Schipper L, Birkmann J et al (2014) WGII AR5 glossary. In: Barros V, Field C (eds) Climate change 2014: impacts, adaptation and vulnerability, contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. http://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Glossary_FGD.pdf

    Google Scholar 

  208. Shepherd J, Cox P, Haigh J, Keith D, Launder B, Mace G, MacKerron G, Pyle J, Rayner S, Redgwell C, Watson A (2009) Geoengineering the climate: science, governance and uncertainty. The Royal Society, London

    Google Scholar 

  209. Schelling T (1996) The economic diplomacy of geoengineering. Clim Chang 33:303–307

    Article  Google Scholar 

  210. Bellamy R, Chilvers J, Vaughan NE, Lenton TM (2012) A review of climate geoengineering appraisals. WIREs Clim Change 3:597–615. https://doi.org/10.1002/wcc.197

    Article  Google Scholar 

  211. Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) (2007) Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York

    Google Scholar 

  212. Jamieson D (1996) Ethics and intentional climate change. Clim Chang 33:323–336

    Article  Google Scholar 

  213. Buck HJ et al (2013) Gender and Geoengineering. Hypatia 10(10):1–19

    Google Scholar 

  214. Gardiner SM (2010) Is ‘arming the future’ with geoengineering really the lesser evil? In: Gardiner SM et al (eds) Climate ethics: essential readings. Oxford University Press, Oxford, pp 284–312

    Google Scholar 

  215. Preston CJ (2012) Solar radiation management and vulnerable populations. In: Preston C (ed) Engineering the climate. Lexington Books, Plymouth, pp 77–94

    Google Scholar 

  216. Svoboda T et al (2012) Sulfate aerosol geoengineering: the question of justice. Public Aff Q 25(3):157–180

    Google Scholar 

  217. Gardiner SM (2013) The desperation argument for geoengineering. Polit Sci Polit 46(1):28–33

    Article  Google Scholar 

  218. Whyte KP (2012) Now this! Indigenous sovereignty, political obliviousness and governance models for SRM research. Ethics Policy Environ 15(2):172–187

    Article  Google Scholar 

  219. Buck HJ et al (2013) Gender and geoengineering. Hypatia 10(10):1–19

    Google Scholar 

  220. Morrow DR (2014) Starting a flood to stop a fire? Some moral constraints on solar radiation management. Ethics Policy Environ 17(2):123–128

    Article  Google Scholar 

  221. Elliot K (2010) Geoengineering and the precautionary principle. Int J Appl Philos 24(2):237–253

    Article  Google Scholar 

  222. Hartzell-Nichols L (2012) Precaution and solar radiation management. Ethics,Policy Environ 15(2):158–171

    Article  Google Scholar 

  223. Hamilton C (2013) Earthmasters: the dawn of the age of climate engineering. Yale University Press, New Haven

    Google Scholar 

  224. Morrow DR, Kopp RE, Oppenheimer M (2013) Political legitimacy in decisions about experiments in solar radiation management. In: W.C.G. Burns and A. Strauss, eds. Climate change geoengineering: philosophical perspectives, legal issues, and governance frameworks. Cambridge: Cambridge University Press, page 146–167

    Google Scholar 

  225. Sandler RL (2012) Solar radiation management and nonhuman species. In: Preston C (ed) Engineering the climate. Lexington Books, Plymouth, pp 95–110

    Google Scholar 

  226. Smith PT (2012) Domination and the ethics of solar radiation management. In: Preston C (ed) Engineering the climate. Lexington Books, Plymouth, pp 43–62

    Google Scholar 

  227. Gardiner S (2017) Geoengineering: ethical questions for deliberate climate manipulators. In: The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press, New York

    Google Scholar 

  228. Palmer C (2011) Does nature matter? The place of the non-human in the ethics of climate change. In: Arnold DG (ed) The ethics of global climate change. Cambridge University Press, Cambridge, pp 272–291. https://doi.org/10.1017/CBO9780511732294.014

    Chapter  Google Scholar 

  229. Singer P (1975) Animal liberation. New York Review/Random House, New York

    Google Scholar 

  230. Regan T (1983) The case for animal rights. University of California Press, Berkeley

    Google Scholar 

  231. Thompson PB (2017) Philosophy of technology and the environment. In: Gardiner SM, Allen T (eds) The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press, New York

    Google Scholar 

  232. Spaargaren G, Mol APJ (1992) Sociology, environment, and modernity: ecological modernization as a theory of social change. Soc Nat Resour 5(4):323–344

    Article  Google Scholar 

  233. Mol APJ (1996) Ecological modernisation and institutional reflexivity: environmental reform in the late modern age. Environ Polit 5(2):302–323

    Article  Google Scholar 

  234. UN-REDD Programme. https://www.unredd.net/about/what-is-redd-plus.html. Accessed 15 Sept 2019

  235. Bastin JF, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365(6448):76–79

    Article  CAS  Google Scholar 

  236. Lewis SL, Wheeler CE, Mitchard ETA, Koch A (2019) Restoring natural forests is the best way to remove atmospheric carbon. Nature 568:25–28. https://doi.org/10.1038/d41586-019-01026-8

  237. Realmonte G, Drouet L, Gambhir A, Glynn J, Hawkes A, Köberle AC, Tavoni M (2019) An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat Commun 10(1):3277

    Article  CAS  Google Scholar 

  238. Gardiner SM, Allen T, Kristin S-F (2016) Ethical Energy Choices. The Oxford Handbook of Environmental Ethics. Oxford University Press, Oxford Handbooks Online. Date Accessed 21 Feb. 2020 https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199941339.001.0001/oxfordhb-9780199941339-e-35

  239. Shrader-Frechette K (2017) The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press, New York, p 391. Kindle Edition. (2017) Ethical energy choices. In: Gardiner SM, Allen T (eds) The Oxford handbook of environmental ethics. Oxford handbooks. Oxford University Press

    Google Scholar 

  240. Paris Agreement, United Nations (2015) https://unfccc.int/sites/default/files/english_paris_agreement.pdf

  241. Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF (2018) Trajectories of the Earth system in the Anthropocene. Proc Natl Acad Sci 115(33):8252–8259

    Article  CAS  Google Scholar 

  242. Allison SK, Murphy SD (2017) Routledge handbook of ecological and environmental restoration. Routledge, London/New York

    Book  Google Scholar 

  243. Pettorelli N, Durant S, du Toit J (eds) Rewilding. Cambridge University Press, Cambridge

    Google Scholar 

  244. Hällfors MH, Vaara EM, Ahteensuu M, Kokko K, Oksanen M, Schulman LE (2018) Assisted Migration as a Conservation Approach Under Climate Change, Encyclopedia of the Anthropocene, Elsevier, pp. 301–305, ISBN 9780128135761, https://doi.org/10.1016/B978-0-12-809665-9.09750-0

Download references

Acknowledgments

Lina Boljka acknowledges support from National Science Foundation (NSF) grant number AGS-1643167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Johnson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, J. et al. (2020). Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1082-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1082-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics