Skip to main content

Advertisement

Log in

The role of renewable energy in climate stabilization: results from the EMF27 scenarios

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; however—with the exception of low temperature heat—there is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)—which can serve as substitutes in low-carbon power supply—are available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Wiser et al. (2011) does not use the “practical” and “technical” distinction. Instead, the authors compare potential with “limited constraints” and “more constraints”. They estimate 70–450 EJ/year with more constraints and 70–3050 EJ/year with limited constraints.

  2. MERGE and EC-IAM are an important exception as they represent generic carbon-free backstop technologies for non-electric energy or hydrogen.

References

  • Arvizu D, Balaya P, Cabeza LF, Hollands KGT, Jäger-Waldau A, Kondo M, Konseibo C, Meleshko V, Stein W, Tamaura Y, Xu H, Zilles R (2011) Direct solar energy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Eng AG, Lucht W, Mapako M, Cerutti OM, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

  • Edenhofer O, Knopf B, Barker T, Baumstark L, Bellevrat E, Chateau B, Criqui P, Isaac M, Kitous A, Kypreos S (2010) The economics of low stabilization: model comparison of mitigation strategies and costs. Energy J 31:11–48

    Google Scholar 

  • Hirth L (2013) The market value of variable renewables: the effect of solar wind power variability on their relative price. Energy Econ 38:218–236. doi:10.1016/j.eneco.2013.02.004

    Article  Google Scholar 

  • IEA (2012) Energy Balances of non-OECD Countries - 2012 edition. International Energy Agency, Paris

    Google Scholar 

  • IPCC (2011) Special report renewable energy sources and climate change mitigation. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Stechow CV (eds) Intergovernmental Panel on Climate Change

  • Krey V, Clarke L (2011) Role of renewable energy in climate mitigation: a synthesis of recent scenarios. Clim Pol. doi:10.1080/14693062.2011.579308

  • Krey V, Luderer G, Clarke L, Kriegler E (2013) Getting from here to there – energy technology transformation pathways in the EMF-27 scenarios. Clim Chang. doi:10.1007/s10584-013-0947-5

  • Kriegler E, Weyant JP, Blanford GJ, Krey V, Clarke L, Edmonds J, Fawcett A, Luderer G, Riahi K, Richels R, Rose SK, Tavoni M, van Vuuren DP (2013) The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Clim Chang. doi:10.1007/s10584-013-0953-7

  • Kumar A, Schei T, Ahenkorah A, Rodriguez RC, Devernay J-M, Freitas M, Hall D, Killingtveit Å, Liu Z (2011) Hydropower. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

  • Luderer G, Bosetti V, Jakob M et al (2012) The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison. Clim Chang 114:9–37. doi:10.1007/s10584-011-0105-x

    Article  Google Scholar 

  • Mills A, Wiser R (2012) Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California. http://emp.lbl.gov/sites/all/files/lbnl-5445e.pdf

  • NREL (2010) Western wind and solar integration study. National Renewable Energy Laboratory (NREL), Golden, CO. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=981991

  • NREL (2012) Renewable Electricity Futures Study. Hand, M.M. et al. NREL/TP-6A20-52409. National Renewable Energy Laboratory, Golden, CO.

  • Pugh G, Clarke L, Marlay R, Kyle P, Wise M, McJeon H, Chan G (2011) Energy R&D portfolio analysis based on climate change mitigation. Energy Econ 33:634–643. doi:10.1016/j.eneco.2010.11.007

    Google Scholar 

  • Rogner H-H, Aguilera RF, Bertani R et al (2012) Chapter 7 - Energy resources and potentials. In: Global energy assessment - toward a sustainable future. Cambridge University Press, Cambridge, pp 423–512

  • Rose SK, Kriegler E, Bibas R, Calvin K, Popp A, van Vuuren D, Weyant J (2013) Bioenergy in energy transformation and climate management. Clim Chang. doi:10.1007/s10584-013-0965-3

  • Sathaye J, Lucon O, Rahman A, Christensen J, Denton F, Fujino J, Heath G, Mirza M, Rudnick H, Schlaepfer A, Shmakin A (2011) Renewable energy in the context of sustainable development. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

  • Turkenburg WC, Arent DJ, Bertani R, Faaij A, Hand M, Krewitt W, Larson ED, Lund J, Mehos M, Merrigan T, Mitchell C, Moreira JR, Sinke W, Sonntag-O’Brien V, Thresher B, van Sark W, Usher E, Usher E (2012) Chapter 11 - Renewable energy. In: Global energy assessment - toward a sustainable future. Cambridge University Press, Cambridge, pp 761–900

  • Ueckerdt F, Hirth L, Luderer G, Edenhofer O (2013) System LCOE: What are the Costs of Variable Renewables? Social Science Research Network, Rochester, NY. http://papers.ssrn.com/abstract=2200572

  • Wiser R, Yang Z, Hand M, Hohmeyer O, Infield D, Jensen PH, Nikolaev V, O’Malley M, Sinden G, Zervos A (2011) Wind energy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

Download references

Acknowledgements

The contribution of GL, VK, RP and JVV to this research was supported by funding from the European Commission’s Seventh Framework Programme under the LIMITS project (grant agreement no. 282846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Luderer.

Additional information

This article is part of the Special Issue on “The EMF27 Study on Global Technology and Climate Policy Strategies” edited by John Weyant, Elmar Kriegler, Geoffrey Blanford, Volker Krey, Jae Edmonds, Keywan Riahi, Richard Richels, and Massimo Tavoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 645 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luderer, G., Krey, V., Calvin, K. et al. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Climatic Change 123, 427–441 (2014). https://doi.org/10.1007/s10584-013-0924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0924-z

Keywords

Navigation