Skip to main content

Glutamine Supplementation in Multiple Trauma of Critical Care

  • Reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

Glutamine is the most abundant amino acid in the body and has been considered nonessential in the past because it can be synthesized de novo. However, during stress and catabolic conditions such as multiple trauma and critical illness, the demand for glutamine increases and its concentration in plasma and muscle falls dramatically. Therefore, glutamine has been reclassified as an essential amino acid under such conditions. Parenteral glutamine supplementation in multiple trauma patients has been associated with reduced infectious complications, mortality, costs, and hospital length of stay. However, glutamine supplementation in multiple trauma patients receiving enteral nutrition and its best route are still controversial. Although glutamine supplementation is recommended, further well-designed multicenter trials are needed to provide a confirmed conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ala-Gln:

Alanyl-glutamine

CARS:

Compensatory Anti-inflammatory Response Syndrome

CRP:

C-reactive Protein

DB:

Double-blind

EAA:

Essential Amino Acid

EN:

Enteral Nutrition

FcγRI/CD64:

Fc Receptor

GCS:

Glasgow Coma Scale

Gln:

Glutamine

HLA-DR:

Human Leukocyte Antigen-DR

HSP:

Heat shock protein

ICU LOS:

ICU length of stay

ICU:

Intensive Care Unit

ISS:

Injury Severity Score

IV:

Intravenous

MODS:

Multiple Organ Dysfunction Syndrome

MOF:

Multiple Organ Failure

NB:

Nitrogen Balance

NS:

Not Significant

RCT:

Randomised Clinical Trial

SB:

Single-blind

SIRS:

Systemic Inflammatory Response Syndrome

SOFA:

Sequential Organ Failure Assessment

TLR:

Toll-like Receptor

TPN:

Total Parenteral Nutrition

UUN:

Urinary Urea Nitrogen

References

  • Acosta JA, Yang JC, et al. Lethal injuries and time to death in a level I trauma center. J Am Coll Surg. 1998;186(5):528–33.

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Roberts PR. Nutrients with immune-modulating effects: what role should they play in the intensive care unit? Curr Opin Anaesthesiol. 2006;19(2):132–9.

    Article  PubMed  Google Scholar 

  • Arnold J, Campbell IT, et al. Increased whole body protein breakdown predominates over increased whole body protein synthesis in multiple organ failure. Clin Sci (Lond). 1993;84(6):655–61.

    Article  CAS  Google Scholar 

  • Askanazi J, Carpentier YA, et al. Muscle and plasma amino acids following injury. Influence of intercurrent infection. Ann Surg. 1980;192(1):78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakalar B, Duska F, et al. Parenterally administered dipeptide alanyl-glutamine prevents worsening of insulin sensitivity in multiple-trauma patients. Crit Care Med. 2006;34(2):381–6.

    Article  CAS  PubMed  Google Scholar 

  • Baker CC, Oppenheimer L, et al. Epidemiology of trauma deaths. Am J Surg. 1980;140(1):144–50.

    Article  CAS  PubMed  Google Scholar 

  • Beale RJ, Sherry T, et al. Early enteral supplementation with key pharmaconutrients improves Sequential Organ Failure Assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med. 2008;36(1):131–44.

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Forsberg E, et al. The local vascular tolerance to an intravenous infusion of a concentrated glutamine solution in ICU patients. Clin Nutr. 2002;21(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Rooyackers O, et al. Elimination kinetics of l-alanyl-l-glutamine in ICU patients. Amino Acids. 2005;29(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Bellander BM, et al. Intravenous glutamine supplementation to head trauma patients leaves cerebral glutamate concentration unaffected. Intensive Care Med. 2006;32(11):1741–6.

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Bellander BM, et al. The pattern of amino acid exchange across the brain is unaffected by intravenous glutamine supplementation in head trauma patients. Clin Nutr. 2008;27(6):816–21.

    Article  CAS  PubMed  Google Scholar 

  • Biffl WL, Moore EE, et al. Nutrition support of the trauma patient. Nutrition. 2002;18(11–12):960–5.

    Article  PubMed  Google Scholar 

  • Biolo G, Zorat F, et al. Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol. 2005;37(10):2169–79.

    Article  CAS  PubMed  Google Scholar 

  • Boelens PG, Houdijk AP, et al. Glutamine-enriched enteral nutrition increases HLA-DR expression on monocytes of trauma patients. J Nutr. 2002;132(9):2580–6.

    CAS  PubMed  Google Scholar 

  • Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24(7):1125–8.

    Article  CAS  PubMed  Google Scholar 

  • Brantley S, Pierce J. Effects of enteral glutamine on trauma patients. Nutr Clin Pract. 2000;15:S13.

    Article  Google Scholar 

  • Brochner AC, Toft P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scand J Trauma Resusc Emerg Med. 2009;17(1):43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conejero R, Bonet A, et al. Effect of a glutamine-enriched enteral diet on intestinal permeability and infectious morbidity at 28 days in critically ill patients with systemic inflammatory response syndrome: a randomized, single-blind, prospective, multicenter study. Nutrition. 2002;18(9):716–21.

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson DP. Post-shock metabolic response. Lancet. 1942;1:433–7.

    Article  Google Scholar 

  • Cuthbertson DP. Alterations in metabolism following injury: part I. Injury. 1980;11(3):175–89.

    Article  CAS  PubMed  Google Scholar 

  • De Jonghe B, Bastuji-Garin S, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.

    Article  PubMed  Google Scholar 

  • Dechelotte P, Hasselmann M, et al. l-alanyl-l-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med. 2006;34(3):598–604.

    Article  CAS  PubMed  Google Scholar 

  • Demetriades D, Murray J, et al. Trauma fatalities: time and location of hospital deaths. J Am Coll Surg. 2004;198(1):20–6.

    Article  PubMed  Google Scholar 

  • Ditschkowski M, Kreuzfelder E, et al. HLA-DR expression and soluble HLA-DR levels in septic patients after trauma. Ann Surg. 1999;229(2):246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doig GS, Simpson F, et al. A review of the true methodological quality of nutritional support trials conducted in the critically ill: time for improvement. Anesth Analg. 2005;100(2):527–33.

    Article  PubMed  Google Scholar 

  • Doig GS, Simpson F, et al. Evidence-based nutrition support in the intensive care unit: an update on reported trial quality. Curr Opin Clin Nutr Metab Care. 2009;12(2):201–6.

    Article  PubMed  Google Scholar 

  • Dupertuis YM, Meguid MM, et al. Advancing from immunonutrition to a pharmaconutrition: a gigantic challenge. Curr Opin Clin Nutr Metab Care. 2009;12(4):398–403.

    Article  CAS  PubMed  Google Scholar 

  • Efron D, Barbul A. Role of arginine in immunonutrition. J Gastroenterol. 2000;35(12):20–3.

    CAS  PubMed  Google Scholar 

  • Eroglu A. The effect of intravenous alanyl-glutamine supplementation on plasma glutathione levels in intensive care unit trauma patients receiving enteral nutrition: the results of a randomized controlled trial. Anesth Analg. 2009;109(2):502–5.

    Article  CAS  PubMed  Google Scholar 

  • Estivariz CF, Griffith DP, et al. Efficacy of parenteral nutrition supplemented with glutamine dipeptide to decrease hospital infections in critically ill surgical patients. JPEN J Parenter Enteral Nutr. 2008;32(4):389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faist E, Schinkel C, et al. Update on the mechanisms of immune suppression of injury and immune modulation. World J Surg. 1996;20(4):454–9.

    Article  CAS  PubMed  Google Scholar 

  • Frankenfield DC, Smith JS, et al. Accelerated nitrogen loss after traumatic injury is not attenuated by achievement of energy balance. JPEN J Parenter Enteral Nutr. 1997;21(6):324–9.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Orozco C, Anaya-Prado R, et al. l-alanyl-l-glutamine-supplemented parenteral nutrition improves infectious morbidity in secondary peritonitis. Clin Nutr. 2004;23(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  • Gamrin L, Andersson K, et al. Longitudinal changes of biochemical parameters in muscle during critical illness. Metabolism. 1997;46(7):756–62.

    Article  CAS  PubMed  Google Scholar 

  • Garrel D, Patenaude J, et al. Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med. 2003;31(10):2444–9.

    Article  CAS  PubMed  Google Scholar 

  • Goeters C, Wenn A, et al. Parenteral l-alanyl-l-glutamine improves 6-month outcome in critically ill patients. Crit Care Med. 2002;30(9):2032–7.

    Article  CAS  PubMed  Google Scholar 

  • Gore DC, Jahoor F. Glutamine kinetics in burn patients. Comparison with hormonally induced stress in volunteers. Arch Surg. 1994;129(12):1318–23.

    Article  CAS  PubMed  Google Scholar 

  • Gore DC, Wolfe RR. Glutamine supplementation fails to affect muscle protein kinetics in critically ill patients. JPEN J Parenter Enteral Nutr. 2002;26(6):342–9 discussion 349–350.

    Article  CAS  PubMed  Google Scholar 

  • Grau T, Bonet A, et al. The effect of l-alanyl-l-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit Care Med. 2011;39(6):1263–8.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RD. Specialized nutrition support in critically ill patients. Curr Opin Crit Care. 2003;9(4):249–59.

    Article  PubMed  Google Scholar 

  • Grimble RF. Nutritional modulation of immune function. Proc Nutr Soc. 2001;60(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  • Grimble RF. Immunonutrition. Curr Opin Gastroenterol. 2005;21:216–22.

    Article  CAS  PubMed  Google Scholar 

  • Haisch M, Fukagawa NK, et al. Oxidation of glutamine by the splanchnic bed in humans. Am J Physiol Endocrinol Metab. 2000;278(4):E593–602.

    CAS  PubMed  Google Scholar 

  • Hall JC, Dobb G, et al. A prospective randomized trial of enteral glutamine in critical illness. Intensive Care Med. 2003;29(10):1710–6.

    Article  PubMed  Google Scholar 

  • Hasenboehler E, Williams A, et al. Metabolic changes after polytrauma: an imperative for early nutritional support. World J Emerg Surg. 2006;1:29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hershman MJ, Cheadle WG, et al. Monocyte HLA-DR antigen expression characterizes clinical outcome in the trauma patient. Br J Surg. 1990;77(2):204–7.

    Article  CAS  PubMed  Google Scholar 

  • Heyland DK. Immunonutrition in the critically ill patient: putting the cart before the horse? Nutr Clin Pract. 2002;17(5):267–72.

    Article  PubMed  Google Scholar 

  • Heyland DK, Novak F, et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 2001;286(8):944–53.

    Article  CAS  PubMed  Google Scholar 

  • Heyland DK, Dhaliwalm R, et al. Optimizing the dose of glutamine dipeptides and antioxidants in critically ill patients: a phase I dose-finding study. JPEN J Parenter Enteral Nutr. 2007;31(2):109–18.

    Article  CAS  PubMed  Google Scholar 

  • Heyland DK, Dhaliwal R, et al. Canadian clinical practice guidelines for nutrition support in the mechanically ventilated, critically ill adult patient 2009. http://www.criticalcarenutrition.com/docs/cpg/9.4pnglu_FINAL.pdf

  • Heyland DK, Muscedere J, et al. A randomized trial of glutamine and antioxidants in critically ill patients. New Engl J Med. 2013;368(16):1489–97.

    Article  CAS  PubMed  Google Scholar 

  • Houdijk AP, Rijnsburger ER, et al. Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet. 1998;352(9130):772–6.

    Article  CAS  PubMed  Google Scholar 

  • Houdijk AP, Nijveldt RJ, et al. Glutamine-enriched enteral feeding in trauma patients: reduced infectious morbidity is not related to changes in endocrine and metabolic responses. JPEN J Parenter Enteral Nutr. 1999;23 Suppl 5:S52–8.

    Article  CAS  PubMed  Google Scholar 

  • Jackson NC, Carroll PV, et al. The metabolic consequences of critical illness: acute effects on glutamine and protein metabolism. Am J Physiol. 1999;276(1 Pt 1):E163–70.

    CAS  PubMed  Google Scholar 

  • Jones NE, Heyland DK. Pharmaconutrition: a new emerging paradigm. Curr Opin Gastroenterol. 2008;24(2):215–22.

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Palmer TE, et al. Randomized clinical outcome study of critically ill patients given glutamine-supplemented enteral nutrition. Nutrition. 1999;15(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  • Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36(6):691–709.

    Article  PubMed  Google Scholar 

  • Keel M, Ecknauer E, et al. Different pattern of local and systemic release of proinflammatory and anti-inflammatory mediators in severely injured patients with chest trauma. J Trauma. 1996;40(6):907–12 discussion 912–904.

    Article  CAS  PubMed  Google Scholar 

  • Kim PK, Deutschman CS. Inflammatory responses and mediators. Surg Clin North Am. 2000;80(3):885–94.

    Article  CAS  PubMed  Google Scholar 

  • Klein S, Peters EJ, et al. Lipolytic response to metabolic stress in critically ill patients. Crit Care Med. 1991;19(6):776–9.

    Article  CAS  PubMed  Google Scholar 

  • Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev. 1990;48(8):297–309.

    Article  CAS  PubMed  Google Scholar 

  • Lenz A, Franklin GA, et al. Systemic inflammation after trauma. Injury. 2007;38(12):1336–45.

    Article  PubMed  Google Scholar 

  • Ligthart-Melis GC, Van de Poll MC, et al. The route of administration (enteral or parenteral) affects the conversion of isotopically labeled l-[2-15N]glutamine into citrulline and arginine in humans. JPEN J Parenter Enteral Nutr. 2007;31(5):343–8 discussion 349–350.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Lopez JM, et al. Evaluation of aminoaciduria in severely traumatized patients. Clin Chim Acta. 2002;316(1–2):123–8.

    Article  CAS  PubMed  Google Scholar 

  • Long CL, Nelson KM, et al. Glutamine supplementation of enteral nutrition: impact on whole body protein kinetics and glucose metabolism in critically ill patients. JPEN J Parenter Enteral Nutr. 1995;19(6):470–6.

    Article  CAS  PubMed  Google Scholar 

  • Long CL, Borghesi L, et al. Impact of enteral feeding of a glutamine-supplemented formula on the hypoaminoacidemic response in trauma patients. J Trauma. 1996;40(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Bazargan N, et al. Metabolic effects of enteral versus parenteral alanyl-glutamine dipeptide administration in critically ill patients receiving enteral feeding: a pilot study. Clin Nutr. 2008;27(2):297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfie J. European round table: the use of immunonutrients in the critically ill. Clin Nutr. 2004;23(6):1426–9.

    Article  CAS  PubMed  Google Scholar 

  • Marshall JC, Cook DJ, et al. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23(10):1638–52.

    Article  CAS  PubMed  Google Scholar 

  • Matthes G, Seifert J, et al. Early death of the severely injured patient – a retrospective analysis. Zentralbl Chir. 2001;126(12):995–9.

    Article  CAS  PubMed  Google Scholar 

  • McClave SA, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33(3):277–316.

    Article  PubMed  Google Scholar 

  • McQuiggan M, Kozar R, et al. Enteral glutamine during active shock resuscitation is safe and enhances tolerance of enteral feeding. JPEN J Parenter Enteral Nutr. 2008;32(1):28–35.

    Article  PubMed  Google Scholar 

  • Melis GC, Boelens PG, et al. The feeding route (enteral or parenteral) affects the plasma response of the dipeptide Ala-Gln and the amino acids glutamine, citrulline and arginine, with the administration of Ala-Gln in preoperative patients. Br J Nutr. 2005;94(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  • Mittendorfer B, Gore DC, et al. Accelerated glutamine synthesis in critically ill patients cannot maintain normal intramuscular free glutamine concentration. JPEN J Parenter Enteral Nutr. 1999;23(5):243–52.

    Article  CAS  PubMed  Google Scholar 

  • Monk DN, Plank LD, et al. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore FA, Sauaia A, et al. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma. 1996;40(4):501–10. discussion 510–502.

    Article  CAS  PubMed  Google Scholar 

  • Napolitano LM, Faist E, et al. Immune dysfunction in trauma. Surg Clin North Am. 1999;79(6):1385–416.

    Article  CAS  PubMed  Google Scholar 

  • Napolitano LM, Ferrer T, et al. Systemic inflammatory response syndrome score at admission independently predicts mortality and length of stay in trauma patients. J Trauma. 2000;49(4):647–52 discussion 652–643.

    Article  CAS  PubMed  Google Scholar 

  • Ochoa JB. Separating pharmaconutrition from classic nutrition goals: a necessary step. Crit Care Med. 2008;36(1):347–8.

    Article  PubMed  Google Scholar 

  • Osborn TM, Tracy JK, et al. Epidemiology of sepsis in patients with traumatic injury. Crit Care Med. 2004;32(11):2234–40.

    Article  PubMed  Google Scholar 

  • Oudemans-van Straaten HM, Bosman RJ, et al. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  • Parry-Billings M, Evans J, et al. Does glutamine contribute to immunosuppression after major burns? Lancet. 1990;336(8714):523–5.

    Article  CAS  PubMed  Google Scholar 

  • Parry-Billings M, Baigrie RJ, et al. Effects of major and minor surgery on plasma glutamine and cytokine levels. Arch Surg. 1992;127(10):1237–40.

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Chen RC, et al. Effects of enteral supplementation with glutamine on mitochondria respiratory function of intestinal epithelium in burned rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2004;16(2):93–6.

    CAS  PubMed  Google Scholar 

  • Pérez-Bárcena J, Crespí C, et al. Lack of effect of glutamine administration to boost the innate immune system response in trauma patients in the intensive care unit. Crit Care. 2010;14(6):R233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubinson L, Diette GB, et al. Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit. Crit Care Med. 2004;32(2):350–7.

    Article  PubMed  Google Scholar 

  • Sacks GS. The data in support of glutamine supplementation. Nutr Clin Pract. 2003;18(5):386–90.

    Article  PubMed  Google Scholar 

  • Sauaia A, Moore FA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  • Schirmer CM, Kornbluth J, et al. Gastrointestinal prophylaxis in neurocritical care. Neurocrit Care. 2012;16(1):184–93.

    Article  PubMed  Google Scholar 

  • Schroder O, Laun RA, et al. Association of interleukin-10 promoter polymorphism with the incidence of multiple organ dysfunction following major trauma: results of a prospective pilot study. Shock. 2004;21(4):306–10.

    Article  PubMed  Google Scholar 

  • Schulman AS, Willcutts KF, et al. Does the addition of glutamine to enteral feeds affect patient mortality? Crit Care Med. 2005;33(11):2501–6.

    Article  CAS  PubMed  Google Scholar 

  • Schulman AS, Willcutts KF, et al. Does enteral glutamine supplementation decrease infectious morbidity? Surg Infect (Larchmt). 2006;7(1):29–35.

    Article  Google Scholar 

  • Singer P, Berger MM, et al. ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28(4):387–400.

    Article  PubMed  Google Scholar 

  • Stahel PF, Flierl MA, et al. “Metabolic staging” after major trauma – a guide for clinical decision making? Scand J Trauma Resusc Emerg Med. 2010;18:34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Streat SJ, Beddoe AH, et al. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma. 1987;27(3):262–6.

    Article  CAS  PubMed  Google Scholar 

  • Tjäder I, Rooyackers O, et al. Effects on skeletal muscle of intravenous glutamine supplementation to ICU patients. Intensive Care Med. 2004;30(2):266–75.

    Article  PubMed  Google Scholar 

  • Uehara M, Plank LD, et al. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999;27(7):1295–302.

    Article  CAS  PubMed  Google Scholar 

  • Vermes I, Beishuizen A. The hypothalamic-pituitary-adrenal response to critical illness. Best Pract Res Clin Endocrinol Metab. 2001;15(4):495–511.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang ZM, et al. The impact of glutamine dipeptide-supplemented parenteral nutrition on outcomes of surgical patients: a meta-analysis of randomized clinical trials. JPEN J Parenter Enteral Nutr. 2010;34(5):521–9.

    Article  CAS  PubMed  Google Scholar 

  • Weingartmann G, Fridrich P, et al. Safety and efficacy of increasing dosages of glycyl-glutamine for total parenteral nutrition in polytrauma patients. Wien Klin Wochenschr. 1996;108(21):683–8.

    CAS  PubMed  Google Scholar 

  • Weingartmann G, Oehler R, et al. HSP70 expression in granulocytes and lymphocytes of patients with polytrauma: comparison with plasma glutamine. Clin Nutr. 1999;18(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  • Weitzel LR, Wischmeyer PE. Glutamine in critical illness: the time has come, the time is now. Crit Care Clin. 2010;26(3):515–25.

    Article  CAS  PubMed  Google Scholar 

  • Wernerman J. Glutamine and acute illness. Curr Opin Crit Care. 2003;9(4):279–85.

    Article  PubMed  Google Scholar 

  • Wischmeyer PE, Lynch J, et al. Glutamine administration reduces Gram-negative bacteremia in severely burned patients: a prospective, randomized, double-blind trial versus isonitrogenous control. Crit Care Med. 2001;29(11):2075–80.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR, Martini WZ. Changes in intermediary metabolism in severe surgical illness. World J Surg. 2000;24(6):639–47.

    Article  CAS  PubMed  Google Scholar 

  • Yang DL, Xu JF. Effect of dipeptide of glutamine and alanine on severe traumatic brain injury. Chin J Traumatol. 2007;10(3):145–9.

    CAS  PubMed  Google Scholar 

  • Zhou YP, Jiang ZM, et al. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. JPEN J Parenter Enteral Nutr. 2003;27(4):241–5.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y-P, Jiang Z-M, et al. The effects of supplemental glutamine dipeptide on gut integrity and clinical outcome after major escharectomy in severe burns: a randomized, double-blind, controlled clinical trial. Clin Nutr Suppl. 2004;1(1):55–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruqaiya M. Al Balushi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Her Majesty the Queen in Right of Australia

About this entry

Cite this entry

Al Balushi, R.M., Paratz, J.D., Cohen, J., Banks, M. (2015). Glutamine Supplementation in Multiple Trauma of Critical Care. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7836-2_141

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7836-2_141

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7837-9

  • Online ISBN: 978-1-4614-7836-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics