Skip to main content

Methane Oxidation (Aerobic)

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Methanotrophy

Definition

Methane oxidation is a microbial metabolic process for energy generation and carbon assimilation from methane that is carried out by specific groups of bacteria, the methanotrophs. Methane (CH4) is oxidized with molecular oxygen (O2) to carbon dioxide (CO2).

Biochemical basis

Methanotrophy is the microbially mediated process of the oxidation of CH4 with O2 to methanol , formaldehyde , formate, and finally CO2 (Figure 1) (Hanson and Hanson, 1996; Madigan et al., 2003; Bowman, 2006). The process is performed by a specialized group of bacteria (qv), the methanotrophs (CH4 oxidizing bacteria). They are a subgroup of the methylotrophs , bacteria capable of utilizing single-carbon compounds (Bowman, 2006). Methane is both the energy source (electron donor) and the sole or partial carbon source for methanotrophs. Aerobic oxidation of methane requires specific enzymes, most importantly methane monooxygenase (MMO), which catalyzes the first step in the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Blumenberg, M., Seifert, R., and Michaelis, W., 2007. Aerobic methanotrophy in the oxic-anoxic transition zone of the Black Sea water column. Organic Geochemistry, 38(1), 84–91.

    Article  Google Scholar 

  • Bodrossy, L., Stralis-Pavese, N., Murrell, J. C., Radajewski, S., Weilharter, A., and Sessitsch, A., 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environmental Microbiology, 5(7), 566–582.

    Article  Google Scholar 

  • Bowman, J., 2006. The methanotrophs - the families methylococcaceae and methylocystaceae. In Dworkin, M. (ed.), The Prokaryotes. New York: Springer, Vol. 5, pp. 266–289.

    Chapter  Google Scholar 

  • Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., Ly, B., Saw, J. H., Zhou, Z., Ren, Y., Wang, J., Mountain, B. W., Crowe, M. A., Weatherby, T. M., Bodelier, P. L. E., Liesack, W., Feng, L., Wang, L., and Alam, M., 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450(7171), 879–882.

    Article  Google Scholar 

  • Hanson, R. S., and Hanson, T. E., 1996. Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471.

    Google Scholar 

  • Lidstrom, M. E., 2006. Aerobic methylotrophic prokaryotes. In Dworkin, M. (ed.), The Prokaryotes. New York: Springer, Vol. 2, pp. 618–634.

    Chapter  Google Scholar 

  • Madigan, M. T., Martinko, J. M., and Parker, J., 2003. Brock Biology of Microorganisms. Upper Saddle River, NJ: Pearson Education.

    Google Scholar 

  • McDonald, I. R., Bodrossy, L., Chen, Y., and Murrell, C. J., 2008. Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology, 75(5), 1305–1315.

    Article  Google Scholar 

  • Pol, A., Heijmans, K., Harhangi, H. R., Tedesco, D., Jetten, M. S. M., and Op den Camp, H. J. M., 2007. Methanotrophy below pH1 by a new Verrucomicrobia species. Nature, 450(7171), 874–878.

    Article  Google Scholar 

  • Schubert, C. J., Coolen, M. J. L., Neretin, L. N., Schippers, A., Abbas, B., Durisch-Kaiser, E., Wehrli, B., Hopmans, E. C., Damste, J. S. S., Wakeham, S., and Kuypers, M. M. M., 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8(10), 1844–1856.

    Article  Google Scholar 

  • Smith, K. A., Dobbie, K. E., Ball, B. C., Bakken, L. R., Sitaula, B. K., Hansen, S., Brumme, R., Borken, W., Christensen, S., Prieme, A., Fowler, D., Macdonald, J. A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A., Degorska, A., and Orlanski, P., 2000. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biology, 6(7), 791–803.

    Article  Google Scholar 

  • St. Louis, V. L., Kelly, C. A., Duchemin, E., Rudd, J. W. M., and Rosenberg, D. M., 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience, 50(9), 766–775.

    Article  Google Scholar 

  • Urmann, K., Gonzalez-Gil, G., Schroth, M. H., Hofer, M., and Zeyer, J., 2005. New field method: gas push-pull test for the in-situ quantification of microbial activities in the vadose zone. Environmental Science & Technology, 39(1), 304–310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Bürgmann, H. (2011). Methane Oxidation (Aerobic). In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_139

Download citation

Publish with us

Policies and ethics