Skip to main content

The Methanotrophs — The Families Methylococcaceae and Methylocystaceae

  • Reference work entry
The Prokaryotes

Introduction

Methanotrophs are a group of bacteria possessing a highly specialized metabolism restricted to the utilization of methane and methanol and are a subset of the methylotrophs, bacteria and archaea able to utilize C1 compounds. Methanotrophs are by definition obligately methylotrophic and do not have the ability to grow on organic compounds possessing carbon-carbon bonds. Besides methane, the only other substrate generally utilized by methanotrophs for growth is methanol; however, a few strains can utilize methylamine and a narrow selection of other C1 compounds. Methanotrophs are an integral part of the natural ecosystem, consuming much of the methane that is biogenically (through methanogenesis) and non-biogenically (e.g., from hydrocarbon seeps, natural gas fields and coal mines) derived. This interception of methane helps maintain a balance of atmospheric methane. Methanotrophs can utilize methane as they possess an enzyme called methane monooxygenase (MMO) which occurs,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Ambramochkina, F. N., L. V. Bezrukova, A. V. Koshelev, V. F. Galchenko, and M. V. Ivanov. 1987 Microbial oxidation of methane in a body of fresh water Microbiologiya (English Translation) 56 375–382

    Google Scholar 

  • Andreev, L. V., and V. F. Galchenko. 1978 Fatty acid composition and identification of methanotrophic bacteria Dokl. Akad. Nauk SSSR 269 1461–1468

    Google Scholar 

  • Andreev, L. V., and V. F. Galchenko. 1983 Phospholipid composition and differentiation of methanotrophic bacteria J. Liquid Chromatogr. 6 2699–2707

    Article  CAS  Google Scholar 

  • Anthony, C. 1982 The Biochemistry of Methylotrophs Academic Press Ltd., London.

    Google Scholar 

  • Bender, M., and R. Conrad. 1992 Kinetics of CH4 oxidation in oxic soils, exposed to ambient air or high CH4 mixing ratios FEMS Microbiol. Ecol. 101 261–270

    CAS  Google Scholar 

  • Bender, M., and R. Conrad. 1994 Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles and distribution on grain size fractions J. Geophys. Res. 99 16531–16540

    Article  CAS  Google Scholar 

  • Bezrukova, L. V., Y. I. Nikolenklo, A. I. Nesterov, V. F. Galchenko, and M. V. Ivanov. 1983 Comparative serological analysis of methanotrophic bacteria Microbiologiya (English Translation) 52 800–805

    Google Scholar 

  • Best, D. J., and I. J. Higgins. 1981 Methane-oxidizing activity and membrane morphology in a methanol grown obligate methanotroph, Methylosinus trichosporium OB3b J. Gen. Microbiol. 125 73–84

    CAS  Google Scholar 

  • Bird, C. C., W. M. Lynch, F. J. Pirt, W. W. Reid, C. J. W. Brooks, and B. C. Middleditch. 1971 Steroids and squalene in Methylococcus capsulatus grown on methane Nature 230 473–474

    Article  PubMed  CAS  Google Scholar 

  • Bodrossy, L., E. M. Holmes, A. J. Holmes, K. L. Kovacs, and J. C. Murrell. 1997 Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov Arch. Microbiol. 168 493–503

    Article  PubMed  CAS  Google Scholar 

  • Boon, P. I., P. Virtue, and P. D. Nichols. 1996 Microbial consortia in wetlnd sediments—a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes Mar. Fresh. Res. 47 27–41

    Article  CAS  Google Scholar 

  • Boschker, H. T. S., S. C. Nold, P. Wellsbury, D. Bos, W. Degraaf, R. Pel, J. J. Parkes, and T. E. Cappenburg. 1998 Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers Nature 392 801–805

    Article  CAS  Google Scholar 

  • Bowman, J. P. 1992 The Systematics of Methane-Utilising Bacteria University of Queensland, Brisbane 140

    Google Scholar 

  • Bowman, J. P., L. Jimenez, I. Rosario, T. C. Hazen, and G. S. Sayler. 1993a Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site Appl. Environ. Microbiol. 59 2380–2387

    PubMed  CAS  Google Scholar 

  • Bowman, J. P., S. A. McCammon, and J. H. Skerratt. 1997 Methylosphaera hansonii gen. nov. sp. nov. a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes Microbiology 143 1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. P., J. H. Skerratt, P. D. Nichols, and L. I. Sly. 1991a Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilising bacteria FEMS Microbiol. Ecol. 85 15–22

    Article  CAS  Google Scholar 

  • Bowman, J. P., L. I. Sly, and A. C. Hayward. 1990 Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp. nov.: two closely related type I obligate methanotrophs Syst. Appl. Microbiol. 13 279–287

    Article  Google Scholar 

  • Bowman, J. P., L. I. Sly, and A. C. Hayward. 1991b Contribution of genome characteristics to the assessment of taxonomy of obligate methanotrophs Int. J. Syst. Bacteriol 41 301–305

    Article  Google Scholar 

  • Bowman, J. P., L. I. Sly, P. D. Nichols, and A. C. Hayward. 1993b Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs Int. J. Syst. Bacteriol. 43 735–753

    Article  Google Scholar 

  • Bowman, J. P., L. I. Sly, and E. Stackebrandt. 1995 The phylogenetic position of the family Methylococcaceae Int. J. Syst. Bacteriol. 45 182–185

    Article  PubMed  CAS  Google Scholar 

  • Bratina, B. J., G. A. Brusseau, and R. S. Hanson. 1992 Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria Int. J. Syst. Bacteriol. 42 645–648

    Article  PubMed  CAS  Google Scholar 

  • Brigmon, R. L., M. M. Franck, J. S. Bray, D. F. Scott, K. D. Lanclos, and C. B. Fliermans. 1998 Direct immunofluoresence and enzyme-linked immunosorbent assays for evaluating organic contaminant degrading bacteria J. Microbiol. Methods 32 1–10

    Article  CAS  Google Scholar 

  • Brown, L. R., and R. J. Strawinski. 1958 Intermediates in the oxidation of methane Bacteriol. Proc. 58 96–132

    Google Scholar 

  • Brusseau, G. A., E. Bulygina, and R. S. Hanson. 1994 Phylogenetic analysis and development of probes differentiating methylotrophic bacteria Appl. Environ. Microbiol. 60 626–636

    PubMed  CAS  Google Scholar 

  • Brusseau, G. A., H. C. Tsien, R. S. Hanson, and I. P. Wackett. 1990 Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase Biodegradation 1 19–29

    Article  PubMed  CAS  Google Scholar 

  • Burrow, K. J., A. Cornish, D. Scott, and I. J. Higgins. 1984 Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b J. Gen. Microbiol. 130 3327–3333

    Google Scholar 

  • Calhoun, A., and G. M. King. 1998 Charcaterization of root-associated methanotrophs from three freshwater macrophyes—Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia Appl. Environ. Microbiol. 64 1099–1105

    PubMed  CAS  Google Scholar 

  • Cardy, D. L. N., V. Laidler, G. P. C. Salmond, and J. C. Murrell. 1956 The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene Arch. Microbiol. 1991 477–483

    Google Scholar 

  • Castro, C. E., S. K. O’Shea, W. Wang, and E. W. Bartnicki. 1996 Biohalogenation—oxidative and hydrolytic pathways in the transformations of acetonitrile, chloroacetonitrile, chloroacetic acid and chloroacetamide by Methylosinus trichosporium OB3b Environ. Sci. Technol. 30 1180–1184

    Article  CAS  Google Scholar 

  • Cavanaugh, C. M. 1993 Methanotrop-invertebrate symbioses in the marine environment: ultrastructural, biochemical and molecular studies J. C. Murrell and D. P. Kelly, Microbial Growth on C1 Compounds Intercept Press, Andover 315–328

    Google Scholar 

  • Cavanaugh, C. M., P. R. Levering, J. S. Maki, R. Mitchell, and M. E. Lidstrom. 1987 Symbiosis of methylotrophic bacteria and deep-sea mussels Nature 325 346–348

    Article  Google Scholar 

  • Childress, J. J., C. R. Fisher, J. M. Brooks, M. C. Kennicut, R. Bidigare, and A. E. Anderson. 1986 A methanotrophic marine molluscan (Bivalvia: Mytilidae) symbiosis: mussels fueled by gas Science 233 1306–1308

    Article  PubMed  CAS  Google Scholar 

  • Collins, M. D., and P. N. Green. 1985 Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria Biochem. Biophys. Res. Com. 133 1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Conrad, R., P. Frenzel, and Y. Cohen. 1995 Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity FEMS Microbiol. Ecol. 610 1–9

    Google Scholar 

  • Coombs, R. W., J. A. Verpoorte, and K. B. Easterbrook. 1976 Protein conformation in bacterial spinae Biopolymers 15 2353–2369

    Article  PubMed  CAS  Google Scholar 

  • Davis, J. B., V. G. Coty, and J. P. Stanley. 1964 Atmospheric nitrogen fixation by methane-oxidizing bacteria J. Bacteriol. 88 468–472

    PubMed  CAS  Google Scholar 

  • Dedysh, S. N., N. S. Panikov, and J. M. Tiedje. 1998 Acidophilic methanotrophic communities from sphagnum peat bogs Appl. Environ. Microbiol. 64 922–929

    PubMed  CAS  Google Scholar 

  • Distel, D. L., and C. M. Cavanaugh. 1994 Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbionts in marine bivalves J. Bacteriol. 176 1932–1938

    PubMed  CAS  Google Scholar 

  • Doetsch, R. N. 1981 Determinative methods of light microscopy P. Gerhardt Manual of Methods for General Bacteriology American Society for Microbiology, Washington, DC 21–33

    Google Scholar 

  • Dugan, P., J. Titus, W. M. Reed, and R. M. Pfister. 1982 Exospore formation in Methylosinus trichosporium J. Bacteriol. 149 354–360

    PubMed  Google Scholar 

  • Dunfield, P. F., W. Liesack, T. Henckel, R. Knowles, and R. Conrad. 1999 High affinity methane oxidation by a soil enrichment culture containing a Type II methanotroph Appl. Environ. Microbiol. 65 1009–1014

    PubMed  CAS  Google Scholar 

  • Easterbrook, K. B. 1989 Spinate Bacteria J. T. Staley, M. P. Bryant, N. Pfennig and J. G. Holt Bergey’s Manual of Systematic Bacteriology The Williams and Wilkins Co., Baltimore 1991–1993

    Google Scholar 

  • Edwards, C., B. A. Hales, G. H. Hall, I. R. McDonald, J. C. Murrell, R. Pickup, D. A. Ritchie, J. R. Saunders, B. M. Simon, and M. Upton. 1998 Microbiological processes in the terrestrial carbon cycle-methane cycling in peat Atmosph. Environ. 32 3247–3255

    Article  CAS  Google Scholar 

  • Escoffier, S., J. Lemer, and P. A. Roger. 1997 Enumeration of methanotrophic bacteria in ricefield soils by plating and MPN techniques—a critical approach Eur. J. Soil Biol. 33 41–51

    Google Scholar 

  • Faust, U., P. Prave, and D. A. Sukatsch. 1977 Continuous biomass productionfrom methanol by Methylomonas clara J. Ferment. Technol. 55 609–614

    CAS  Google Scholar 

  • Fitch, M. W., D. W. Graham, R. G. Arnold, S. K. Agarwal, P. Phelps, G. E. Speitel, and G. Georgiou. 1993 Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium OB3b Appl. Environ. Microbiol. 59 2771–2776

    PubMed  CAS  Google Scholar 

  • Foster, J. W., and R. H. Davis. 1966 A methane-dependent coccus, with notes on classification of obligate methane-utilizing bacteria J. Bacteriol. 91 1924–1931

    PubMed  CAS  Google Scholar 

  • Franzmann, P. D., Y. T. Liu, D. L. Balkwill, H. C. Aldrich, E. C. DeMacario, and D. R. Boone. 1997 Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica Int. J. Syst. Bacteriol. 47 1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Galchenko, V. F. 1977 New species of Methylocystis Y. R. Malashenko Proceedings of the 2nd Symposium on the Growth of Microorganisms The Academy of Sciences, USSR, Moscow 1–17

    Google Scholar 

  • Galchenko, V. F. 1994 Sulfate reduction, methane production and methane oxidation in various waterbodies of the Bunger Hills Osasis of Antarctica Microbiologiya (English Translation) 63 388–396

    Google Scholar 

  • Galchenko, V. F., F. N. Ambramochkina, L. V. Bezrukova, E. N. Sokolova, and M. V. Ivanov. 1988 Species composition of aerobic methanotrophic microflora in the Black Sea Microbiologiya (English Translation) 57 248–253

    Google Scholar 

  • Galchenko, V. F., and A. I. Nesterov. 1981 Numerical analysis of protein electrophoretograms of obligate methane-utilizing bacteria Microbiologiya (English Translation) 50 725–730

    Google Scholar 

  • Galchenko, V. F., V. N. Shishkina, V. S. Tyurin, and Y. A. Trotsenko. 1975 Isolation of pure cultures of methanotrophs and their properties Microbiologiya (English Translation) 50 725–730

    Google Scholar 

  • Galchenko, V. F., V. N. Shishkina, N. E. Suzina, and Y. A. Trotsenko. 1977 Isolation and properties of new strains of obligate methanotrophs Microbiologiya (English Translation) 46 723–728

    Google Scholar 

  • Graham, D. W., D. G. Korich, R. P. LeBlanc, N. A. Sinclair, and R. G. Arnold. 1992 Applications of a colorimetric plate assay for soluble methane monooxygenase activity Appl. Environ. Microbiol. 58 2231–2236

    PubMed  CAS  Google Scholar 

  • Guckert, J. B., D. B. Ringelberg, D. C. White, R. S. Hanson, and B. J. Bratina. 1991 Membrane fatty acids as phenotypic markers for the polyphasic approach to taxonomy of methylotrophs within the Proteobacteria J. Gen. Microbiol. 137 2631–2641

    Article  PubMed  CAS  Google Scholar 

  • Guezennec, J. and A. Fiali-Medioni. 1996 Bacterial abundance and diversity in the Barbados Trench determined by phospholipid analysis FEMS Microbiol. Ecol. 19 83–93

    Article  CAS  Google Scholar 

  • Hamamura, N., C. Page, T. Long, L. Semprini, and D. J. Arp. 1997 Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, Mycobacterium vaccae job5 and methane-grown Methylosinus trichosporium OB3b Appl. Environ. Microbiol 63 3607–3613

    PubMed  CAS  Google Scholar 

  • Hanson, R. S., B. J. Bratina, and G. A. Brusseau. 1993 Phylogeny and ecology of methylotrophic bacteria J. C. Murrell and D. P. Kelley, Microbial Growth on C1 Compounds Intercept Press, Andover 285–302

    Google Scholar 

  • Hanson, R. S., and T. E. Hanson. 1996 Methanotrophic bacteria Microbiol. Rev. 60 439–471

    PubMed  CAS  Google Scholar 

  • Hazeu, W., W. H. Batenburg-van der Vegte, and J. C. de Bruyn. 1980 Some characteristics of Methylococcus mobilis sp. nov Arch. Microbiol. 124 211–220

    Article  CAS  Google Scholar 

  • Hazeu, W., and P. J. Steenis. 1970 Isolation and characterization of two vibrio-shaped methane-oxidizing bacteria Antonie van Leeuwenhoek 36 67–72

    Article  PubMed  CAS  Google Scholar 

  • Haubold, R. 1978 Two different types of surface structures of methane-utilizing bacteria J. Basic Microbiol. 18 511–515

    CAS  Google Scholar 

  • Holmes, A. J., A. Costello, M. E. Lidstrom, and J. C. Murrell. 1995a Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related FEMS Microbiol. Lett. 132 203–208

    Article  PubMed  CAS  Google Scholar 

  • Holmes, A. J., N. J. P. Owens, and J. C. Murrell. 1996 Detection of novel marine methanotrophs using phylogenetic and functional gene probes afetr methane enrichment Microbiology 141 1947–1955

    Article  Google Scholar 

  • Holmes, A. J., N. P. J. Owens, and J. C. Murrell. 1996 Molecular analysis of enrichment cultures of marine methane-oxidising bacteria J. Exp. Mar. Biol. Ecol. 203 27–38

    Article  CAS  Google Scholar 

  • Hou, C. T. 1984 Methylotrophs: Microbiology, Biochemistry and Genetics CRC Press, Boca Raton.

    Google Scholar 

  • Hou, C. T., A. I. Laskin, and R. N. Patel. 1978 Growth and polysaccharide production by Methylcystis parvus OBBP on methanol Appl. Environ. Microbiol. 37 800–803

    Google Scholar 

  • Jahnke, L. L., and P. D. Nichols. 1986 Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions J. Bacteriol. 167 238–242

    PubMed  CAS  Google Scholar 

  • Jahnke, L. L., H. Stan-Lotter, K. Kato, and L. I. Hochstein. 1992 Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus (Bath) J. Gen. Microbiol. 138 1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Jahng, D. J., and T. K. Wood. 1994 Trichloroethylene and chloroform degradtion by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b Appl. Environ. Microbiol. 60 2473–2482

    PubMed  CAS  Google Scholar 

  • Jahng, D. J., C. S. Kim, R. S. Hanson, and T. K. Wood. 1996 Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria Biotechnol. Bioeng. 51 349–359

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, O., D. Byrom, and D. Jones. 1987 Methylophilus: a new genus of methanol-utilizing bacteria Int. J. Syst. Bacteriol. 37 446–458

    Article  Google Scholar 

  • Jensen, S, L. Ovreas, F. L. Daae, and V. Torsvik. 1998 Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR-amplified 16S rDNA fragments FEMS Microbiol. Ecol. 26 17–26

    Article  CAS  Google Scholar 

  • King, G. M. 1994 Methanotrophic associations with the roots and rhizomes of aquatic vegetation Appl. Environ. Microbiol. 60 3220–3227

    PubMed  CAS  Google Scholar 

  • Koh, S. C., J. P. Bowman, and G. S. Sayler. 1993 Soluble methane monooxygenase production and trichloroethylene degradation by a Type I methanotroph Methylomonas methanica 68-1 Appl. Environ. Microbiol. 59 960–967

    PubMed  CAS  Google Scholar 

  • Kuono, K., T. Oki, H. Komura, and A. Ozaki. 1973 Isolation of new methanol-utilizing bacteria and its thiamine requirement for growth J. Gen. Appl. Microbiol. 19 11–21

    Article  Google Scholar 

  • Kussmaul, M., M. Wilimzig, and E. Bock. 1998 Methanotrophs and methanogens in masonry Appl. Environ. Microbiol. 64 4350–4352

    Google Scholar 

  • Lees, V. N., J. P. Owens, and J. C. Murrell. 1991 Nitrogen metabolism of marine methanotrophs Arch. Microbiol. 157 60–63

    Article  CAS  Google Scholar 

  • Lidstrom, M. E. 1988 Isolation and characterization of marine methanotrophs Antonie van Leeuwenhoek 54 189–199

    Article  PubMed  CAS  Google Scholar 

  • Lontoh, S., and J. D. Semrau. 1998 Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase Appl. Environ. Microbiol. 64 1106–1114

    PubMed  CAS  Google Scholar 

  • Makula, R. A. 1978 Phospholipid composition of methane-utilizing bacteria J. Bacteriol. 134 771–777

    PubMed  CAS  Google Scholar 

  • Malashenko, Y. R., Y. Kaier, E. N. Budkova, Y. Isagulova, U. Berger, T. P. Krishtab, D. V. Chernyshenko, and V. A. Romanovskaya. 1987 Methane-oxidizing microflora in bodies of fresh and salt water Microbiologiya (English Translation) 56 115–120

    Google Scholar 

  • Malashenko, Y. R., V. A. Romanovskaya, and E. I. Kvashnikov. 1972 Taxonomy of bacteria utilizing gaseous hydrocarbons Microbiologiya (English Translation) 41 777–783

    Google Scholar 

  • Malashenko, Y. R., V. A. Romanovskaya, and V. N. Bogachenko. 1975a Thermophilic and thermtolerant methane-assimilating bacteria Microbiologiya (English Translation) 44 638–643

    Google Scholar 

  • Malashenko, Y. R., V. A. Romanovskaya, V. N. Bogachenko, and A. D. Shved. 1975b Thermophilic and thermotolerant methane-assimilating bacteria Microbiologiya (English Translation) 44 855–862

    Google Scholar 

  • Martin, H., and J. C. Murrell. 1995 Methane monooxygenase mutants of Methylosinus trichosporium constructed by marker-exchange mutagenesis FEMS Microbiol. Lett. 127 243–248

    Article  CAS  Google Scholar 

  • McDonald, I. R., G. H. Hall, R. W. Pickup, and J. C. Murrell. 1996 Methane oxidation potential and preliminary analysis of methanotrophs in blanket peat bog using molecular ecology techniques FEMS Microbiol. Ecol. 21 197–211

    Article  CAS  Google Scholar 

  • McDonald, I. R., E. M. Kenna, and J. C. Murrell. 1995 Detection of methanotrophic bacsteria in environmental samples with PCR Appl. Environ. Microbiol. 61 116–121

    PubMed  CAS  Google Scholar 

  • McDonald, I. R., and J. C. Murrell. 1997a The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs Appl. Environ. Microbiol. 63 3218–3224

    PubMed  CAS  Google Scholar 

  • McDonald, I. R., and J. C. Murrell. 1997b The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs FEMS Microbiol. Lett. 156 205–210

    Article  PubMed  CAS  Google Scholar 

  • McDonald, I. R., H. Uchiyama, S. Kambe, O. Yagi, and J. C. Murrell. 1997 The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. M Appl. Environ. Microbiol. 63 1898–1904

    PubMed  CAS  Google Scholar 

  • Mendoza, Y. A., F. O. Gulacar, Z. L. Hu, and A. Buchs. 1987 Unsubstituted and hydroxy substituted acids in recent lacustrine sediment Int. J. Environ. Anal. Chem. 31 107–127

    Article  CAS  Google Scholar 

  • Meyer, J. 1977 New data on taxonomy of methane-utilizing bacteria Y. R. Malashenko, Proceedings of the 2nd Symposium on the Growth of Microorganisms on C1 Compounds Academy of Sciences, USSR, Moscow 17–20

    Google Scholar 

  • Meyer, J., R. Haubold, J. Heyer, and W. Bockel. 1986 Contribution to the taxonomy of methanotrophic bacteria: correlation between membrane type and GC-value Z. Allg. Mikrobiol. 26 155–160

    Google Scholar 

  • Moran, B. N., and W. J. Hickey. 1997 Trichloroethylene biodegradtion by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms Appl. Environ. Microbiol. 63 3866–3871

    PubMed  CAS  Google Scholar 

  • Morinaga, Y., S. Yamanaka, S. Otsuka, and Y. Hirose. 1976 Characteristics of a newly isolated methane-utilizing bacterium, Methylomonas flagellata sp. nov Agric. Biol. Chem. 40 1539–1545

    Article  CAS  Google Scholar 

  • Murray, R. G. E., D. J. Brenner, R. R. Colwell, P. De Vos, M. Goodfellow, P. A. D. Grimont, N. Pfennig, E. Stackebrandt, and G. Zarvarzin. 1990 Report of the ad hoc committee on approaches to taxonomy within Proteobacteria Int. J. Syst. Bacteriol. 40 213–215

    Article  Google Scholar 

  • Murrell, J. C., and H. Dalton. 1983a Ammonia assimilation in Methylococcus capsulatus (Bath) and other obligate methanotrophs J. Gen. Microbiol. 120 1197–1206

    Google Scholar 

  • Murrell, J. C., and H. Dalton. 1983b Nitrogen fixation in obligate methanotrophs J. Gen. Microbiol. 129 3481–3486

    CAS  Google Scholar 

  • Murrell, J. C., I. R. McDonald, and D. G. Bourne. 1998 Molecular methods for the study of methanotroph ecology FEMS Microbiol. Ecol. 27 103–114

    Article  CAS  Google Scholar 

  • Neilsen, A. K., K. Gerdes, and J. C. Murrell. 1997 Copper-dependent reciprocal transcriptional regulation of methane monoxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium Mol. Microbiol. 25 399–409

    Article  Google Scholar 

  • Nesterov, A. I., A. V. Koshelev, V. F. Galchenko, and M. V. Ivanov. 1986 Survival of obligate methanotrophous bacteria following lyophilization and subsequent storage Microbiologiya (English Translation) 55 215–221

    Google Scholar 

  • Neunlist, S., and M. Rohmer. 1985 Novel hopanoids from the methylotrophic bacteria Methylococcus capsulatus and Methylomonas methanica: 22(S)-35-aminobacteriohopane-30,31,32,33,34-pentol and (22S)-35-amino-methylaminobacteriohopane-30,31,32,33,34-pentol Biochem. J. 231 635–639

    PubMed  CAS  Google Scholar 

  • Nichols, P. D., J. M. Henson, C. P. Antworth, J. Parsons, J. T. Wilson, and D. C. White. 1987 Detection of a microbial consortium including Type II methanotrophs by use of phospholipid fatty acids in aerobic halogenated-degrading soil columns enriched with natural gas Environ. Toxicol. Chemi. 6 89–97

    Article  CAS  Google Scholar 

  • Nichols, P. D., G. A. Smith, C. P. Antworth, R. S. Hanson, and D. C. White. 1985 Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-utilizing bacteria FEMS Microbiol. Ecol. 32 327–335

    Article  Google Scholar 

  • Nordlund, P., H. Dalton, and H. Eklund. 1992 The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase FEBS Lett. 307 257–262

    Article  PubMed  CAS  Google Scholar 

  • Oakley, C. J., and J. C. Murrell. 1988 nifH genes in the obligate methane oxidizing bacteria FEMS Microbiol. Lett. 49 53–57

    Article  Google Scholar 

  • Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt. 1989 Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase Appl. Environ. Microbiol. 55 2819–2826

    PubMed  CAS  Google Scholar 

  • Omelchenko, M. V., L. V. Vasileva, G. A. Zavarzin, N. D. Saveleva, A. M. Lysenko, L. L. Mityushina, V. N. Khmelenina, and Y. A. Trotsenko. 1996 A novel psychrophilic methanotroph of the genus Methylobacter Microbologiya (English Translation) 65 339–343

    Google Scholar 

  • Oremland, R. S., and C. W. Cuthbertson. 1992 Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor Nature 356 421–423

    Article  CAS  Google Scholar 

  • Phelps, P. A., S. K. Agarwal, G. E. Speitel, and G. Georgiou. 1992 Methylosinus trichosporium OB3b mutants having constituitive expression of soluble methane monooxygenase in the presence of high levels of copper Appl. Environ. Microbiol. 58 3701–3708

    PubMed  CAS  Google Scholar 

  • Prior, S. D., and H. Dalton. 1985 The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath) J. Gen. Microbiol. 131 155–163

    CAS  Google Scholar 

  • Reeburgh, W. S., S. C. Whalen, and M. L. Alpern. 1993 The role of methylotroph in the global methane budget J. C. Murrell and D. P. Kelley Microbial Growth on C1 Compounds Intercept Press, Andover 1–14

    Google Scholar 

  • Reed, W. M., and P. R. Dugan. 1978 Distribution of Methylomonas methanica and Methylosinus trichosporium in Cleveland Harbor as determined by an indirect fluorescent antibody-membrane filter technique Appl. environ. Microbiol. 35 422–430

    PubMed  CAS  Google Scholar 

  • Reed, W. M., J. A. Titus, P. R. Dugan, and R. M. Pfister. 1980 Structure of Methylosinus trichosporium exospores J. Bacteriol. 141 908–913

    PubMed  CAS  Google Scholar 

  • Ren, T., J. A. Amaral, and R. Knowles. 1997 The response of methane consumption by pure cultures of methanotrophic bacteria to oxygen Can. J. Microbiol. 43 925–928

    Article  CAS  Google Scholar 

  • Romanovskaya, V. A., Y. R. Malashenko, and V. N. Bogachenko. 1978 Corrected diagnoses of the genera and species of methane-utilizing bacteria Microbiologiya (English Translation) 47 96–103

    Google Scholar 

  • Rosenzweig, A. C., C. A. Frederick, S. J. Lippard, and P. Nordlund. 1993 Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane Nature 366 537–543

    Article  PubMed  CAS  Google Scholar 

  • Roslev, P., and G. M. King. 1994 Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions Appl. Environ. Microbiol. 60 2602–2608

    PubMed  CAS  Google Scholar 

  • Roslev, P., and G. M. King. 1995 Aerobic and anaerobic starvation metabolism in methanotrophic bacteria Appl. Environ. Microbiol. 61 1563–1570

    PubMed  CAS  Google Scholar 

  • Ross, J. L., P. I. Boon, P. Ford, and B. T. Hart. 1997 Detection and quantification with 16S rRNA probes of planktonic methylotrophic bacteria ina floodplain lake Microb. Ecol. 34 97–108

    Article  PubMed  CAS  Google Scholar 

  • Saralov, A. I., and T. R. Babnazarov. 1982 The microflora and molecular nitrogen fixation in takyr-like soils of rice fields in Karakalpacia Microbiologiya (English Translation) 51 847–853

    CAS  Google Scholar 

  • Saralov, A. I., I. N. Krylova, E. E. Saralova, and S. I. Kuznetsov. 1984 Distribution and species composition of methane-oxidizing bacteria in lakewaters Microbiologiya (English Translation) 53 695–700

    Google Scholar 

  • Schmalijohann, R., and H. J. Fluegel. 1987 Methane-oxidizing bacteria in pogonophora Sarsia 72 91–98

    Google Scholar 

  • Scott, D., J. Brannan, and I. J. Higgins. 1981 The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b J. Gen. Microbiol. 125 63–72

    CAS  Google Scholar 

  • Sieburth, J. M., P. W. Johnson, V. M. Church, and D. C. Laux. 1993 C1 bacteria in the water column of Chesapeake Bay, USA. III. Immunologic relationships in the type species of marine monomethylamine-and methane-oxidizing bacteria to wild estuarine and oceanic cultures Mar. Ecol. Prog. Ser. 95 91–102

    Article  Google Scholar 

  • Sieburth, J. M., P. W. Johnson, M. A. Eberhardt, M. E. Sieracki, M. Lidstrom, and D. Laux. 1987 The first methane-oxidizing bacterium from the upper mixed layer of the deep ocean, Methylomonas pelagica sp. nov Curr. Microbiol. 14 285–293

    Article  CAS  Google Scholar 

  • Skerman, V. B. D., V. McGowan, and P. H. A. Sneath. 1980 Approved lists of bacterial names Int. J. Syst. Bacteriol. 30 225–420

    Article  Google Scholar 

  • Skerratt, J. H., P. D. Nichols, J. P. Bowman, and L. I. Sly. 1992 Occurrence and significance of long-chain (w-1)-hydroxy fatty acids in methane-utilising bacteria Org. Geochem. 18 92–99

    Article  Google Scholar 

  • Southward, A. J., E. C. Southward, P. R. Dando, G. H. Rau, G. Felbeck, and H. Fluegel. 1981 Bacterial symbionts and low 13C/13C ratios in tissues of Pogonophora indicate an unusual nutrition metabolism Nature 193 616–620

    Article  Google Scholar 

  • Stainthorpe, A. C., V. Lees, G. P. C. Salmond, H. Dalton, and J. C. Murrell. 1990 The methane monoxygenase gene cluster of Methylococcus capsulatus (Bath) Gene 91 27–34

    Article  PubMed  CAS  Google Scholar 

  • Stainthorpe, A. C., V. Lees, G. P. Salmond, H. Dalton, and J. C. Murrell. 1991 Screening of obligate methanotrophs for soluble methane monooxygenase genes FEMS Microbiol. Lett. 70 211–216

    Google Scholar 

  • Starostina, N. G., and N. I. Pashkova. 1993 Interactions between populations in a 3-component mixed culture of methanotrophic and lytic bacteria Microbiologiya (English Translation) 62 213–218

    Google Scholar 

  • Strauss, D. G., and U. Berger. 1983 Methylosin A and B, pigments from Methylosinus trichosporium J. Basic Microbiol. 23 661–668

    CAS  Google Scholar 

  • Sullivan, J. P., D. Dickinson, and H. A. Chase. 1998 Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation Crit. Rev. Microbiol. 24 335–373

    Article  PubMed  CAS  Google Scholar 

  • Sundh, I., M. Nilsson, and P. Borga. 1997 Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles Appl. Environ. Microbiol. 63 1476–1482

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W., and A. F. D. Kennedy. 1986 Comparison of bacterial lipopolysaccharides by high performance liquid chromatography Appl. Environ. Microbiol. 52 948–950

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W., and C. L. MacKenzie. 1977 Glucan common to the microcyst walls of cyst-forming bacteria J. Bacteriol. 129 599–605

    PubMed  CAS  Google Scholar 

  • Suzina, N. E., and B. A. Fikhte. 1977 A new type of surface ultrastructure observed in methane-oxidizing microorganisms Dokl. Akad. Nauk. SSSR 234 470–471

    PubMed  CAS  Google Scholar 

  • Takeda, K. 1988 Charcateristics of a nitrogen-fixing methanotroph, Methylocystis T-1 Antonie van Leeuwenhoek 54 521–534

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., S. Motomatsu, Y. Hachiya, S. Fukuoka, and Y. Takahara. 1974 Characterization and culture conditions for a methane-oxidizing bacteria J. Ferm. Technol. 52 793–798

    CAS  Google Scholar 

  • Tartakovsky, B., C. B. Miguez, L. Petti, D. Bourque, D. Groleau, and S. R. Guiot. 1998 Tetrachloroethylene dechlorination, using a consortium of co-immobilized methanogenic and methanotrophic bacteria Enzyme Microb. Technol. 22 255–260

    Article  CAS  Google Scholar 

  • Tellez, C. M., K. P. Gaus, D. W. Graham, R. G. Arnold, and R. Z. Guzman. 1998 Isolation of copper biochelates from Methylosinus trichosporium OB3b and soluble methane monooxygenase mutants Appl. Environ. Microbiol. 64 1115–1122

    PubMed  CAS  Google Scholar 

  • Toukdarian, A. E., and M. E. Lidstrom. 1984a DNA hybridization analysis of the nif region of two methylotrophs and molecular cloning of nif-specific DNA J. Bacteriol. 157 925–930

    PubMed  CAS  Google Scholar 

  • Toukdarian, A. E., and M. E. Lidstrom. 1984b Nitrogen metabolism in a new obligate methanotroph, “Methylosinus” strain 6 J. Gen. Microbiol. 130 1827–1837

    PubMed  CAS  Google Scholar 

  • Trotsenko, Y. A., N. V. Doronina, and P. Hirsch. 1989 Genus Blastobacter J. T. Staley, M. P. Byrant, N. Pfennig and J. G. Holt Bergey’s Manual of Systematic Bacteriology Williams and Wilkins, Baltimore 3 1963–1968

    Google Scholar 

  • Tschantz, M. F., J. P. Bowman, P. R. Bienkowski, T. L. Donaldson, J. M. Strong-Gunderson, A. V. Palumbo, and G. S. Sayler. 1995 Methanotrophic TCE biodegradtion in a multi-stage bioreactor Environ. Sci. Technol. 29 2073–2082

    Article  PubMed  CAS  Google Scholar 

  • Tsien, H., and R. S. Hanson. 1992 Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene Appl. Environ. Microbiol. 58 953–960

    PubMed  CAS  Google Scholar 

  • Tsuji, K., H. C. Tsien, R. S. Hanson, S. R. dePalma, R. Scholtz, and S. LaRoche. 1990 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship amongst methylotrophs J. Gen. Microbiol. 136 1–10

    Article  PubMed  CAS  Google Scholar 

  • Urakami, T., and K. Komagata. 1986a Cellular fatty acid composition and coenzyme Q system in Gram-negative methanol-utilizing bacteria J. Gen. Appl. Microbiol. 25 343–360

    Article  Google Scholar 

  • Urakami, T., and K. Komagata. 1986b Emendation of Methylobacullus Yordy and Weaver 1977, a genus for methanol-utilizing bacteria Int. J. Syst. Bacteriol. 36 502–511

    Article  Google Scholar 

  • Vela, G. R., and O. Wyss. 1964 Improved stain for the visualization of Azotobacter encystment J. Bacteriol. 87 476–477

    PubMed  CAS  Google Scholar 

  • Warner, P. J., J. W. Drozd, and I. J. Higgins. 1983 The effect of amino acids and amino acid analogues on the growth of an obligate methanotroph, Methylosinus trichosporium OB3b J. Chem. Technol. Biotechnol. 33B 2934–2935

    Google Scholar 

  • Weaver, T. L., M. A. Patrick, and P. R. Dugan. 1975 Whole-cell and membrane lipids of the methylotrophic bacterium Methylosinus trichosporium J. Bacteriol 123 602–605

    Google Scholar 

  • Wendlandt, K. D., M. Jechorek, J. Helm, and U. Stottmeister. 1998 Production of PHB with a high molecular mass from methane Pol. Degr. Stab. 59 191–194

    Article  CAS  Google Scholar 

  • Whittenbury, R., and H. Dalton. 1981 The Methylotrophic Bacteria P. Starr, H. Stolph, H. G. Truper, A. Blaows and H. G. Schlegel The Prokaryotes Springer-Verlagm KG, Berlin 894–902

    Google Scholar 

  • Whittenbury, R., and N. R. Krieg. 1984 Family IV. Methylococcaceae N. R. Krieg and J. G. Holt Bergey’s Manual of Sytematic Bacteriology Williams and Wilkins Co., Baltimore 256–261

    Google Scholar 

  • Whittenbury, R., S. L. Davies, and J. F. Davey. 1970a Exospores and cysts formed by methane-utilizing bacteria J. Gen. Microbiol. 61 219–226

    Article  PubMed  CAS  Google Scholar 

  • Whittenbury, R., K. C. Phillips, and J. F. Wilkinson. 1970b Enrichment, isolation and some properties of methane-utilizing bacteria J. Gen. Microbiol. 61 205–218

    Article  PubMed  CAS  Google Scholar 

  • Zhivotchenko, A. G., E. S. Nikonova, and M. H. Jorgensen. 1995 Effect of fermentation conditions on N-2 fixation by Methylococcus capsulatus Biopr. Engineer. 14 9–15

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Bowman, J. (2006). The Methanotrophs — The Families Methylococcaceae and Methylocystaceae. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_15

Download citation

Publish with us

Policies and ethics