Skip to main content

Aerobic Methylotrophic Prokaryotes

  • Reference work entry
The Prokaryotes

1 Introduction

Methylotrophic bacteria are those organisms with the ability to utilize (as their sole source of carbon and energy) reduced carbon substrates with no carbon-carbon bonds. By this definition the group includes bacteria that can grow on substrates such as methane, methanol, methylated amines, halogenated methanes and methylated sulfur species. Methylotrophic bacteria are quite widespread in nature, being found in a variety of aquatic and terrestrial habitats (King, 1992). They appear to play an important role in the cycling of carbon in specific habitats (King, 1992), and they comprise the principal biological sink for methane and other methylated greenhouse gases, highlighting an important role in global warming (King, 1992; Oremland and Culbertson, 1992). Although many anaerobic methylotrophic bacteria are known, especially among the methanogens, this chapter will cover only the aerobic and facultatively anaerobic methylotrophs (for convenience, termed “aerobic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Andreae, M. O. 1980 Dimethyl-sulfoxide in marine and freshwaters Limnol. Oceanogr. 25 1054–1063

    Article  CAS  Google Scholar 

  • Andreae, M. O., and H. Raemdonck. 1983 Dimethyl-sulphide in the surface ocean and the marine atmosphere: a global view Science 221 744–747

    Article  PubMed  CAS  Google Scholar 

  • Anthony, C. 1982 The Biochemistry of Methylotrophs Academic Press New York NY 404

    Google Scholar 

  • Anthony, C. 1996 The bacterial oxidation of methane and methanol Adv. Microb. Physiol. 27 113–210

    Article  Google Scholar 

  • Anthony, C., and M. Ghosh. 1998 The structure and function of the PQQ-containing quinoprotein dehydrogenases Prog. Biophys. Molec. Biol. 69 1–21

    Article  CAS  Google Scholar 

  • Arfman, N., H. J. Hektor, L. V. Bystrykh, N. I. Govorukhina, L. Dijkhuizen, and J. Frank. 1997 Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus Eur. J. Biochem. 244 426–433

    Article  PubMed  CAS  Google Scholar 

  • Attwood, M. M., N. Arfman, R. A. Weusthuis, and L. Dijkhuizen. 1992 Purification and characterization of an NAD-linked formaldehyde dehydrogenase from the facultative RuMP cycle methylotroph Arthrobacter P1 Ant. v. Leeuwenhoek 62 201–207

    Article  CAS  Google Scholar 

  • Banwart, W. L., and J. M. Bremner. 1976 Evolution of volatile sulfur compounds from soils treated with sulfur-containing organic materials Soil Biol. Biochem. 8 439–443

    Article  CAS  Google Scholar 

  • Barber, R. D., and T. J. Donohue. 1998 Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation Biochemistry 37 530–537

    Article  PubMed  CAS  Google Scholar 

  • Barta, T. M., and R. S. Hanson. 1993–4 Genetics of methane and methanol oxidation in Gram-negative methylotrophic bacteria Ant. v. Leeuwenhoek 64 109–120

    Article  Google Scholar 

  • Beardsmore, A. J., P. N. G. Aperghis, and J. R. Quayle. 1982 Characterization of the assimilatory and dissimilatory pathways of carbon metabolism during growth of Methylophilus methylotrophus on methanol J. Gen. Microbiol. 128 1423–1439

    CAS  Google Scholar 

  • Biville, F., P. Mazodier, E. Turlin, and F. Gasser. 1989 Mutants of Methylobacterium organophilum unable to synthesize PQQ Ant. v. Leeuwenhoek 56 103–107

    Article  CAS  Google Scholar 

  • Bodrossy, L., E. M. Holmes, A. J. Holmes, K. L. Kovacs, and J. C. Murrell. 1997 Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov Arch. Microbiol. 168 493–503

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. P., L. I. Sly, and E. Stackebrandt. 1995 The phylogenetic position of the family Methylococcaceae Int. J. Syst. Bacteriol. 45 182–185

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. P., S. A. McCammon, and J. H. Skerratt. 1997 Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes Microbiology 143 1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Bratina, B. J., G. A. Brusseau, and R. S. Hanson. 1992 Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria Int. J. Syst. Bacteriol. 42 645–648

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh, L. V., J. Vonck, E. F. van Bruggen, J. van Beeumen, B. Samyn, N. I. Govorukhina, N. Arfman, J. A. Duine, and L. Dijkhuizen. 1993 Electron microscopic analysis and structural characterization of novel NADP (H)-containing methanol: N,N′-dimethyl-4nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19 J. Bacteriol. 175 1814–1822

    PubMed  CAS  Google Scholar 

  • Bystrykh, L. V., N. I. Govorukhina, L. Dijkhuizen, and J. A. Duine. 1997 Tetrazolium-dye-linked alcohol dehydrogenase of the methylotrophic actinomycete Amycolatopsis methanolica is a three-component complex Eur. J. Biochem. 247 280–287

    Article  PubMed  CAS  Google Scholar 

  • Chandra, T. S., and Y. I. Shethna. 1977 Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellus J. Bacteriol. 131 389–398

    PubMed  CAS  Google Scholar 

  • Chang, S. L., B. J. Wallar, J. D. Lipscomb, and K. H. Mayo. 1999 Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling Biochemistry 38 5799–5812

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdov, A. Y., L. V. Chistoserdova, W. S. McIntire, and M. E. Lidstrom. 1994aThe genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: Complete nucleotide sequence and generation and characteristics of mau mutants J. Bacteriol. 176 4052–4065

    PubMed  CAS  Google Scholar 

  • Chistoserdov, A. Y., W. S. McIntire, F. S. Mathews, and M. E. Lidstrom. 1994bThe organization of the methylamine utilization (mau) genes in Methylophilus methylotrophus W3A1 J. Bacteriol. 176 4073–4080

    PubMed  CAS  Google Scholar 

  • Chistoserdova, L. V., A. Y. Chistoserdov, N. L. Schklyar, M. V. Baev, and Y. D. Tsygankov. 1991 Oxidative and assimilative enzyme activities in continuous cultures of the obligate methylotroph Methylobacillus flagellatum Ant. v. Leeuwenhoek 60 101–108

    Article  CAS  Google Scholar 

  • Chistoserdova, L. V., and M. E. Lidstrom. 1994aGenetics of the serine cycle in Methylobacterium extorquens AM1: Cloning, sequence, mutation, and physiological effect of glyA, the gene for serine hydroxymethyltransferase J. Bacteriol. 176 6759–6762

    PubMed  CAS  Google Scholar 

  • Chistoserdova, L. V., and M. E. Lidstrom. 1994bGenetics of the serine cycle in Methylobacterium extorquens AM1: Identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA J. Bacteriol. 176 1957–1968

    PubMed  CAS  Google Scholar 

  • Chistoserdova, L. V., and M. E. Lidstrom. 1996 Molecular characterization of a chromosomal region involved in the oxidation of acetyl CoA into glyoxylate in the Icl-methylotroph, Methylobacterium extorquens AM1 Microbiology 142 1459–1468

    Article  PubMed  Google Scholar 

  • Chistoserdova, L., and M. E. Lidstrom. 1997 Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1 Microbiology 143 1729–1736

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova, L., J. Vorholt, R. K. Thauer, and M. E. Lidstrom. 1998 Enzymes and coenzymes thought to be archaeal-specific that are required for aerobic methylotrophy Science 281 99–102

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova, L., L. Gomelsky, J. A. Vorholt, M. Gomelsky, Y. D. Tsygankov, and M. E. Lidstrom. 2000 Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph Microbiology 146 233–238

    PubMed  CAS  Google Scholar 

  • Colby, J., and L. J. Zatman. 1975 Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation in obligate methylotrophs and restricted facultative methylotrophs Biochem. J. 148 513–520

    PubMed  CAS  Google Scholar 

  • Coulter, C., J. T. Hamilton, W. C. McRoberts, L. Kulakov, M. J. Larkin, and D. B. Harper. 1999 Halomethane: bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source Appl. Environ. Microbiol. 65 4301–4312

    PubMed  CAS  Google Scholar 

  • Cue, D., H. Lam, R. L. Dillingham, R. S. Hanson, and M. C. Flickinger. 1997 Genetic manipulation of Bacillus methanolicus, a Gram-positive, thermotolerant methylotroph Appl. Environ. Microbiol. 63 1406–1420

    PubMed  CAS  Google Scholar 

  • Davidson, V. L. 1999 Structure, function, and applications of tryptophan tryptophylquinone enzymes Adv. Exp. Med. Biol. 467 587–595

    Article  PubMed  CAS  Google Scholar 

  • De Boer, L, L. Dijkhuizen, G. Grobben, M. Goodfellow, E. Stackebrandt, J. H. Parlett, D. Whitehead, and D. Witt. 1990 Amycolatopsis methanolica sp. nov., a facultatively methylotrophic actinomycete Int. J. Syst. Bacteriol. 40 194–204

    Article  PubMed  Google Scholar 

  • DeBont, J. A. M., J. P. VanDijken, and W. Harder. 1981 Dimethylsulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium J. Gen. Microbiol. 127 315–323

    CAS  Google Scholar 

  • Dedysh, S. N., W. Liesack, V. N. Khmelenina, N. E. Suzina, Y. A. Trotsenko, J. D. Semrau, A. M. Bares, N. S. Panikov, and J. M. Tiedje. 2000 Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs Int. J. Syst. Evol. Microbiol. 50 955–969

    Article  PubMed  CAS  Google Scholar 

  • De Vries, G. E., U. Kues, and U. Stahl. 1990 Physiology and genetics of methylotrophic bacteria FEMS Microbiol. Rev. 6 57–101

    PubMed  Google Scholar 

  • de Vries, G. E., N. Arfman, P. Terpstra, and L. Dijkhuizen. 1992 Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene J. Bacteriol. 174 5346–5353

    PubMed  Google Scholar 

  • De Zwart, J. M. M., P. N. Nelisse, and J. G. Kuenen. 1996 Isolation and characterization of Methylophaga sulfidovorans sp. nov.: An obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat FEMS Microbiol. Ecol. 20 261–270

    Article  Google Scholar 

  • Dijkhuizen, L., N. Arfman, M. M. Attwood, A. G. Brooke, W. Harder, and E. M. Watling. 1988 Isolation and initial characterization of thermotolerant methylotrophic Bacillus strains FEMS Microbiol. Lett. 52 209–214

    Article  Google Scholar 

  • Distel, D. L., and C. M. Cavanaugh. 1994 Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves J. Bacteriol. 176 1932–1938

    PubMed  CAS  Google Scholar 

  • Doronina, N. V., S. A. Braus-Stromeyer, T. Leisinger, and Y. A. Trotsenko. 1995 Isolation and characterization of a new facultatively methylotrophic bacterium: Description of Methylorhabdus multivorans, gen. nov., sp. nov Syst. Appl. Microbiol. 18 92–98

    Article  CAS  Google Scholar 

  • Doronina, N. V., Y. A. Trotsenko, V. I. Krausova, E. S. Boulygina, and T. P. Tourova. 1998 Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium Int. J. Syst. Bacteriol. 48 1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Duine, J. A. 1999 Thiols in formaldehyde dissimilation and detoxification Biofactors 10 201–206

    Article  PubMed  CAS  Google Scholar 

  • Elango, N., R. Radhakrishnan, W. A. Froland, B. J. Wallar, C. A. Earhart, J. D. Lipscomb, and D. H. Ohlendorf. 1997 Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b Protein Sci. 6 556–568

    Article  PubMed  CAS  Google Scholar 

  • Friedebold, J., and B. Bowien. 1993 Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus J. Bacteriol. 175 4719–4728

    PubMed  CAS  Google Scholar 

  • Fuse, H., M. Ohta, O. Takimura, K. Murakami, H. Inoue, Y. Yamaoka, J. M. Oclarit, and T. Omori. 1998 Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase Biosci. Biotechnol. Biochem. 62 1925–1931

    Article  PubMed  CAS  Google Scholar 

  • Gak, E. R., Y. D. Tsygankov, and A. Y. Chistoserdov. 1997 Organization of methylamine utilization genes (mau) in “Methylobacillus flagellatum” KT and analysis of mau mutants Microbiology 143 1827–1835

    Article  PubMed  CAS  Google Scholar 

  • Galkin, A., L. Kulakova, V. Tishkov, N. Esaki, and K. Soda. 1995 Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10 Appl. Microbiol. Biotechnol. 44 479–483

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, B., I. R. McDonald, R. Finch, G. P. Stafford, A. K. Nielsen, and J. C. Murrell. 2000 Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs Appl. Environ. Microbiol. 66 966–975

    Article  PubMed  CAS  Google Scholar 

  • Gliesche, C. G., and P. Hirsch. 1992 Mutagenesis and chromosome mobilization in Hyphomicrobium facilis B-522 Can. J. Microbiol. 38 1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Gliesche, C. G. 1997 Transformation of methylotrophic bacteria by electroporation Can. J. Microbiol. 43 197–201

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, P. M., and C. Anthony. 1998 The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes Adv. Microb. Physiol. 40 1–80

    Article  PubMed  CAS  Google Scholar 

  • Graichen, M. E., L. H. Jones, B. V. Sharma, R. J. van Spanning, J. P. Hosler, and V. L. Davidson. 1999 Heterologous expression of correctly assembled methylamine dehydrogenase in Rhodobacter sphaeroides J. Bacteriol. 181 4216–4222

    PubMed  CAS  Google Scholar 

  • Green, P. N., and I. J. Bousfield. 1983 Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov Int. J. Syst. Bacteriol. 33 875–877

    Article  Google Scholar 

  • Grosse, S., L. Laramee, K. D. Wendlandt, I. R. McDonald, C. B. Miguez, and H. P. Kleber. 1999 Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14 Appl. Environ. Microbiol. 65 3929–3935

    PubMed  CAS  Google Scholar 

  • Grundig, M. W., and W. Babel. 1987 Routes of formaldehyde oxidation to CO2 in Acetobacter methanolicus MB58 J. Basic Microbiol. 27 457–459

    Article  Google Scholar 

  • Grundig, M. W., and W. Babel. 1989 Detoxification of formaldehyde by acetic acid bacteria Zentralbl. Hyg. Umweltmed. 188 466–474

    PubMed  CAS  Google Scholar 

  • Hagemeier, C. H., L. Chistoserdova, M. E. Lidstrom, R. K. Thauer, and J. A. Vorholt. 2000 Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1 Eur. J. Biochem. 267 3762–3769

    Article  PubMed  CAS  Google Scholar 

  • Hagishita, T., T. Yoshida, Y. Izumi, and T. Mitsunaga. 1996 Cloning and expression of the gene for serine-glyoxylate aminotransferase from an obligate methylotroph Hyphomicrobium methylovorum GM2 Eur. J. Biochem. 241 1–5

    Article  PubMed  CAS  Google Scholar 

  • Hancock, T. L., A. M. Costello, M. E. Lidstrom, and R. S. Oremland. 1998 Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils Appl. Environ. Microbiol. 64 2899–2905

    PubMed  CAS  Google Scholar 

  • Hanson, R. S., and T. E. Hanson. 1996 Methanotrophic bacteria Microbiol. Rev. 60 439–471

    PubMed  CAS  Google Scholar 

  • Harder, W., and M. M. Attwood. 1978 Biology, physiology and biochemistry of hyphomicrobia Adv. Microb. Physiol. 17 303–359

    Article  PubMed  CAS  Google Scholar 

  • Harms, N., and R. J. van Spanning. 1991 C1 metabolism in Paracoccus denitrificans: genetics of Paracoccus denitrificans J. Bioenerg. Biomembr. 23 187–210

    Article  PubMed  CAS  Google Scholar 

  • Harms, N., J. Ras, W. N. Reijnders, R. J. van Spanning, and A. H. Stouthamer. 1996 S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: A universal pathway for formaldehyde detoxification? J. Bacteriol. 178 6296–6299

    PubMed  CAS  Google Scholar 

  • Hirt, W., E. Papoutsakis, E. Krug, H. C. Lim, and G. T. Tsao. 1978 Formaldehyde incorporation by a new methylotroph (L3) Appl. Environ. Microbiol. 36 56–62

    PubMed  CAS  Google Scholar 

  • Holland, M. A., and J. C. Polacco. 1994 PPFMs and other covert contaminants: Is there more to plant physiology than just plant? Ann. Rev. Plant Physiol. Plant Molec. Biol. 45 197–209

    Article  CAS  Google Scholar 

  • Holloway, B. W., P. P. Kearney, and B. R. Lyon. 1987 The molecular genetics of C1 utilizing microorganisms: An overview Ant. v. Leeuwenhoek 53 47–53

    Article  CAS  Google Scholar 

  • Holmes, A. J., D. P. Kelly, S. C. Baker, A. S. Thompson, P. De Marco, E. M. Kenna, and J. C. Murrell. 1997 Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: Novel methylotrophs able to grow on methanesulfonic acid Arch. Microbiol. 167 46–53

    Article  PubMed  CAS  Google Scholar 

  • Janvier, M., and P. A. Grimont. 1995 The genus Methylophaga, a new line of descent within phylogenetic branch gamma of Proteobacteria Res. Microbiol. 146 543–550

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, O., and D. Jones. 1987 Taxonomic studies on some gram-negative methylotrophic bacteria J. Gen. Microbiol. 133 453–473

    CAS  Google Scholar 

  • Jenni, B., M. Aragno, and J. K. W. Wiegel. 1987 Numerical analysis and DNA-DNA hybridization studies on Xanthobacter and emendation of Xanthobacter flavus Syst. Appl. Microbiol. 9 247–253

    Article  Google Scholar 

  • Jollie, D. R., and J. D. Lipscomb. 1991 Formate dehydrogenase from Methylosinus trichosporium OB3b: Purification and spectroscopic characterization of the cofactors J. Biol. Chem. 266 21853–21863

    PubMed  CAS  Google Scholar 

  • Kanagawa, T., and D. P. Kelly. 1986 Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus FEMS Microbiol. Lett. 34 13–19

    CAS  Google Scholar 

  • Kang, J. K., S. W. Kim, H. G. Jeong, J. K. Park, Y. Park, and J. S. Lee. 1999 Isolation and characterization of a mutant defective in the production of methanol dehydrogenase from a new restricted facultative methanol-oxidizing bacterium IUBMB Life 48 209–213

    PubMed  CAS  Google Scholar 

  • Kelly, D. P., and J. C. Murrell. 1999 Microbial metabolism of methanesulfonic acid Arch. Microbiol. 172 341–348

    Article  PubMed  CAS  Google Scholar 

  • Khmelenina, V. N., M. G. Tsvetkova, A. P. Beschastnyi, and Y. A. Trotsenko. 1997 Peculiarities of metabolism of the methylotrophic actinomycete Amycolatopsis methanolica Mikrobiologiya 66 321–328

    Google Scholar 

  • Kim, C. S., and T. K. Wood. 1997 Creating auxotrophic mutants in Methylophilus methylotrophus AS1 by combining electroporation and chemical mutagenesis Appl. Microbiol. Biotechnol. 48 105–108

    Article  PubMed  CAS  Google Scholar 

  • King, G. M. 1992 Ecological aspects of methane oxidation, a key determinant of global methane dynamics Adv. Microb. Ecol. 12 431–474

    Article  CAS  Google Scholar 

  • Kiriuchin, M. Y., L. V. Kletsova, A. Y. Chistoserdov, and Y. D. Tsygankov. 1988 Properties of glucose 6-phosphate and 6-phosphogluconate dehydrogenases of the obligate methylotroph Methylobacillus flagellatum KT FEMS Microbiol. Lett. 52 199–204

    Article  Google Scholar 

  • Lamzin, V. S., A. E. Aleshin, B. V. Strokopytov, M. G. Yukhnevich, V. O. Popov, E. H. Harutyunyan, and K. S. Wilson. 1992 Crystal structure of NAD-dependent formate dehydrogenase Eur. J. Biochem. 206 441–452

    Article  PubMed  CAS  Google Scholar 

  • Leisinger, T., R. Bader, R. Hermann, M. Schmid-Appert, and S. Vuilleumier. 1994 Microbes, enzymes and genes involved in dichloromethane utilization Biodegradation 5 237–248

    Article  PubMed  CAS  Google Scholar 

  • Leisinger, T., and S. A. Braus-Stromeyer. 1995 Bacterial growth with chlorinated methanes Environ. Health Perspect. 103 33–36

    PubMed  CAS  Google Scholar 

  • Levering, P. R., J. P. van Dijken, M. Veenhius, and W. Harder. 1981 Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines Arch. Microbiol. 129 72–80

    Article  PubMed  CAS  Google Scholar 

  • Levering, P. R., L. Dijkuizen, and W. Harder. 1982 Enzymatic evidence for the operation of the FBP aldolase cleavage and TK/TA rearrangement variant of the RuMP cycle in Arthrobacter P1 FEMS Microbiol. Lett. 14 257–261

    Article  CAS  Google Scholar 

  • Levering, P. R., L. M. Croes, L. Tiesma, and L. Dijkhuizen. 1986 Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Effect of pulse-wise addition of “heterotrophic” substrates to C1 substrate-limited continuous cultures Arch. Microbiol. 144 272–278

    Article  CAS  Google Scholar 

  • Lidstrom, M. E., and D. I. Stirling. 1990 Methylotrophs: genetics and commercial applications Ann. Rev. Microbiol. 44 27–58

    Article  CAS  Google Scholar 

  • Lipscomb, J. 1994 Biochemistry of the soluble methane monoxygeanse Ann. Rev. Microbiol. 48 371–399

    Article  CAS  Google Scholar 

  • Marison, I. W., and M. M. Attwood. 1982 A possible alternative mechanism for the oxidation of formaldehyde to formate J. Gen. Microbiol. 128 1441–1446

    CAS  Google Scholar 

  • McDonald, I. R., H. Uchiyama, S. Kambe, O. Yagi, and J. C. Murrell. 1997 The methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M Appl. Environ. Microbiol. 63 1898–1904

    PubMed  CAS  Google Scholar 

  • McIntire, W. S. 1990 Trimethylamine dehydrogenase from Bacterium W3A1 Meth. Enz. 188 250–260

    Article  CAS  Google Scholar 

  • McIntire, W. S., and C. Hartman. 1993 Copper-containing amine oxidases In: V. Davidson (Ed.) Principles and Applications of Quinoproteins Marcel Dekker New York NY 97–172

    Google Scholar 

  • McNerney, T., and M. L. O’Connor. 1980 Regulation of enzymes associated with C-1 metabolism in three facultative methylotrophs Appl. Env. Microbiol. 40 370–375

    CAS  Google Scholar 

  • Misset-Smiths, M., P. W. van Ophem, S. Sakuda, and J. A. Duine. 1997 Mycothiol, 1-O-(2′-[N-acetyl-L-cysteinyl]amido-2′-deoxy-alpha-D-glucopyranosyl)-D-myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase FEBS Lett. 409 221–222

    Article  Google Scholar 

  • Mitsui, R., Y. Sakai, H. Yasueda, and N. Kato. 2000 A novel operon encoding formaldehyde fixation: the ribulose monophosphate pathway in the gram-positive facultative methylotrophic bacterium Mycobacterium gastri MB19 J. Bacteriol. 182 944–948

    Article  PubMed  CAS  Google Scholar 

  • Murrell, J. C. 1994 Molecular genetics of methane oxidation Biodegradation 5 145–159

    Article  PubMed  CAS  Google Scholar 

  • Murrell, J. C., B. Gilbert, and I. R. McDonald. 2000 Molecular biology and regulation of methane monooxygenase Arch. Microbiol. 173 325–332

    Article  PubMed  CAS  Google Scholar 

  • Nesvera, J., J. Hochmannova, M. Patek, A. Sroglova, and V. Becvarova. 1994 Transfer of the broad-host-range IncQ plasmid RSF1010 and other plasmid vectors to the gram-positive methylotroph Brevibacterium methylicum by electrotransformation Appl. Microbiol. Biotechnol. 40 864–866

    Article  PubMed  CAS  Google Scholar 

  • Newaz, S. S., and L. B. Hersh. 1975 Reduced nicotinamide adenine dinucleotide-activated phosphoenolpyruvate carboxylase in Pseudomonas MA: potential regulation between carbon assimilation and energy production J. Bacteriol. 124 825–833

    PubMed  CAS  Google Scholar 

  • Nguyen, H. H., S. J. Elliott, J. H. Yip, and S. I. Chan. 1998 The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization J. Biol. Chem. 273 7957–7966

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, A. K., K. Gerdes, and J. C. Murrell. 1997 Copper-dependent reciprocal transcriptional regulation of methane monooxygenase in Methylococcus capsulatus and Methylosinus trichosporium Molec. Microbiol. 25 399–409

    Article  CAS  Google Scholar 

  • Oremland, R. S., and C. W. Culbertson. 1992 Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor Nature 356 421–423

    Article  CAS  Google Scholar 

  • Pol, A., H. J. Op den Camp, S. G. Mees, M. A. Kersten, and C. van der Drift. 1994 Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air Biodegradation 5 105–112

    Article  PubMed  CAS  Google Scholar 

  • Pomper, B. K., J. A. Vorholt, L. Chistoserdova, M. E. Lidstrom, and R. K. Thauer. 1999 A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1 Eur. J. Biochem. 261 475–480

    Article  PubMed  CAS  Google Scholar 

  • Quayle, J. R., and N. Pfennig. 1975 Utilization of methanol by rhodospirillaceae Arch. Microbiol. 102 193–198

    Article  PubMed  CAS  Google Scholar 

  • Raj, H. D. 1989 Oligotrophic methylotrophs: Ancylobacter (basonym “Microcyclus” Orskov) Raj gen. nov Crit. Rev. Microbiol. 17 89–106

    Article  PubMed  CAS  Google Scholar 

  • Ras, J., P. W. Van Ophem, W. N. Reijnders, R. J. Van Spanning, J. A. Duine, A. H. Stouthamer, and N. Harms. 1995 Isolation, sequencing, and mutagenesis of the gene encoding NAD-and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth J. Bacteriol. 177 247–251

    PubMed  CAS  Google Scholar 

  • Reed, W. M., and P. R. Dugan. 1987 Isolation and characterization of the facultative methylotroph Mycobacterium ID-Y J. Gen. Microbiol. 133 1389–1395

    PubMed  CAS  Google Scholar 

  • Reizer, J., A. Reizer, and M. H. Saier Jr. 1997 Is the ribulose monophosphate pathway widely distributed in bacteria? Microbiology 143 2519–2520

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig, A. C., H. Brandstetter, D. A. Whittington, P. Nordlund, S. J. Lippard, and C. A. Frederick. 1997 Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions Proteins 29 141–152

    Article  PubMed  CAS  Google Scholar 

  • Sakai, Y., R. Mitsui, Y. Katayama, H. Yanase, and N. Kato. 1999 Organization of the genes involved in the ribulose monophosphate pathway in an obligate methylotrophic bacterium, Methylomonas aminofaciens 77a FEMS Microbiol. Lett. 176 125–130

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, J. K., and R. S. Oremland. 1999 Oxidation of methyl halides by the facultative methylotroph strain IMB-1 Appl. Environ. Microbiol. 65 5035–5041

    PubMed  CAS  Google Scholar 

  • Semrau, J. D., A. Chistoserdov, J. Lebron, A. Costello, J. Davagnino, E. Kenna, A. J. Holmes, R. Finch, J. C. Murrell, and M. E. Lidstrom. 1995 Particulate methane monoozygenase genes in methanotrophs J. Bacteriol. 177 3071–3079

    PubMed  CAS  Google Scholar 

  • Shigematsu, T., S. Hanada, M. Eguchi, Y. Kamagata, T. Kanagawa, and R. Kurane. 1999 Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation Appl. Environ. Microbiol. 65 5198–5206

    PubMed  CAS  Google Scholar 

  • Speer, B. S., L. Chistoserdova, and M. E. Lidstrom. 1994 Sequence of the gene for a NAD(P)-dependent formaldehyde dehydrogenase (class III alcohol dehydrogenase) from a marine methanotroph Methylobacter marinus A45 FEMS Microbiol. Lett. 121 349–355

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E., A. Fischer, T. Roggentin, U. Wehmeyer, D. Bomar, and J. Smida. 1988 A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: Membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter and “Dichotomicrobium” to the alpha-subdivision of purple non-sulfur bacteria Arch. Microbiol. 149 547–556

    Article  PubMed  CAS  Google Scholar 

  • Stirling, D. I., and H. Dalton. 1978 Purification and properties of an NAD(P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath) J. Gen. Microbiol. 107 19–29

    Article  PubMed  CAS  Google Scholar 

  • Stolyar, S., A. M. Costello, T. L. Peeples, and M. E. Lidstrom. 1999 Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath Microbiol. 145 1235–1244

    Article  CAS  Google Scholar 

  • Strand, S. E., and M. E. Lidstrom. 1984 Characterization of a new marine methylotroph FEMS Microbiol. Lett. 21 247–251

    Article  CAS  Google Scholar 

  • Studer, A., S. Vuilleumier, and T. Leisinger. 1999 Properties of the methylcobalamin:H4folate methyltransferase involved in chloromethane utilization by Methylobacterium sp. strain CM4 Eur. J. Biochem. 264 242–249

    Article  PubMed  CAS  Google Scholar 

  • Suylen, G. M., and J. G. Kuenen. 1986 Chemostat enrichment and isolation of Hyphomicrobium EG: A dimethyl-sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1 Ant. v. Leeuwenhoek 52 281–293

    Article  CAS  Google Scholar 

  • Tanaka, Y., T. Yoshida, K. Watanabe, Y. Izumi, and T. Mitsunaga. 1997 Characterization, gene cloning and expression of isocitrate lyase involved in the assimilation of one-carbon compounds in Hyphomicrobium methylovorum GM2 Eur. J. Biochem. 249 820–825

    Article  PubMed  CAS  Google Scholar 

  • Toyama, H., C. Anthony, and M. E. Lidstrom. 1998 Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation FEMS Microbiol. Lett. 166 1–7

    Article  PubMed  CAS  Google Scholar 

  • Ueda, S., S. Matsumoto, S. Shimizu, and T. Yamane. 1991 Transformation of a methylotrophic bacterium, Methylobacterium extorquens, with a broad-host-range plasmid by electroporation Ann. NY Acad. Sci. 646 99–105

    Article  PubMed  CAS  Google Scholar 

  • Urakami, T., H. Araki, H. Oyanagi, K. I. Suzuki, and K. Komagata. 1992 Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter, new genus as Aminobacter aminovorans, new subspecies and description of Aminobacter aganoensis, new species and Aminobacter niigataensis, new species Int. J. Syst. Bacteriol. 42 84–92

    Article  Google Scholar 

  • van der Palen, C. J., D. J. Slotboom, L. Jongejan, W. N. Reijnders, N. Harms, J. A. Duine, and R. J. van Spanning. 1995 Mutational analysis of mau genes involved in methylamine metabolism in Paracoccus denitrificans Eur. J. Biochem. 230 860–871

    Article  PubMed  Google Scholar 

  • Vannelli, T., M. Messmer, A. Studer, S. Vuilleumier, and T. Leisinger. 1999 A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane Proc. Natl. Acad. Sci. USA 96 4615–4620

    Article  PubMed  CAS  Google Scholar 

  • Van Ophem, P. W., and J. A. Duine. 1990 Different types of formaldehyde-oxidizing dehydrogenases in Nocardia sp p. 239: Purification and characterization of an NAD-dependent aldehyde dehydrogenase Arch. Biochem. Biophys. 282 248–253

    Article  PubMed  Google Scholar 

  • Van Ophem, P. W., J. Van Beeumen, and J. A. Duine. 1992 NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica Eur. J. Biochem. 206 511–518

    Article  PubMed  Google Scholar 

  • Van Ophem, P. W., and J. A. Duine. 1994 NAD-and co-substrate (GSH or factor)-dependent formaldehyde dehydrogenases from methylotrophic microorganisms act as a class III alcohol dehydrogenase FEMS Microbiol. Lett. 116 87–93

    Article  Google Scholar 

  • Vorholt, J., L. Chistoserdova, M. E. Lidstrom, and R. K. Thauer. 1998 The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1 J. Bacteriol. 180 5351–5356

    PubMed  CAS  Google Scholar 

  • Vorholt, J. A., L. Chistoserdova, S. M. Stolyar, R. K. Thauer, and M. E. Lidstrom. 1999 Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases J. Bacteriol. 181 5750–5757

    PubMed  CAS  Google Scholar 

  • Vrijbloed, J. W., V. J. van Hylckama, N. M. van der Put, G. I. Hessels, and L. Dijkhuizen. 1995 Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene J. Bacteriol. 177 6666–6669

    PubMed  CAS  Google Scholar 

  • Walters, K. J., G. T. Gassner, S. J. Lippard, and G. Wagner. 1999 Structure of the soluble methane monooxygenase regulatory protein B Proc. Natl. Acad. Sci. USA 96 7877–7882

    Article  PubMed  CAS  Google Scholar 

  • Weaver, C. W., and M. E. Lidstrom. 1985 Methanol dissimilation in Xanthobacter H4-14: activities, induction and comparison to Pseudomonas AM1 and Paracoccus denitrificans J. Gen. Microbiol. 131 2183–2197

    PubMed  CAS  Google Scholar 

  • Whitta, S., M. I. Sinclair, and B. W. Holloway. 1985 Transposon mutagenesis in Methylobacterium AM1 (Pseudomonas AM1) J. Gen. Microbiol. 131 1547–1549

    CAS  Google Scholar 

  • Whittenbury, R., and H. Dalton. 1981 The methylotrophic bacteria In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) [{http://www.prokaryotes.com}The Prokaryotes] Springer New York NY 894–902

    Google Scholar 

  • Yamada, Y., K. Hoshino, and T. Ishikawa. 1997 The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level Biosci. Biotechnol. Biochem. 61 1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Yanase, H., K. Ikeyama, R. Mitsui, S. Ra, K. Kita, Y. Sakai, and N. Kato. 1996 Cloning and sequence analysis of the gene encoding 3-hexulose-6-phosphate synthase from the methylotrophic bacterium, Methylomonas aminofaciens 77a, and its expression in Escherichia coli FEMS Microbiol. Lett. 135 201–205

    Article  PubMed  CAS  Google Scholar 

  • Yang, C. C., L. C. Packman, and N. S. Scrutton. 1995 The primary structure of Hyphomicrobium X dimethylamine dehydrogenase: Relationship to trimethylamine dehydrogenase and implications for substrate recognition Eur. J. Biochem. 232 264–271

    Article  PubMed  CAS  Google Scholar 

  • Yasueda, H., Y. Kawahara, and S. Sugimoto. 1999 Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression J. Bacteriol. 181 7154–7160

    PubMed  CAS  Google Scholar 

  • Yoshida, T., K. Yamaguchi, T. Hagishita, T. Mitsunaga, A. Miyata, T. Tanabe, H. Toh, T. Ohshiro, M. Shimao, and Y. Izumi. 1994 Cloning and expression of the gene for hydroxypyruvate reductase (D-glycerate dehydrogenase) from an obligate methylotroph Hyphomicrobium methylovorum GM2 Eur. J. Biochem. 223 727–732

    Article  PubMed  CAS  Google Scholar 

  • Zahn, J. A., and A. A. DiSpirito. 1996 Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath) J. Bacteriol. 178 1018–1029

    PubMed  CAS  Google Scholar 

  • Zatman, L. J. 1981 A search for patterns in methylotrophic pathways In: H. Dalton (Ed.) Microbial Growth on C1 Compounds Heyden London 42–54

    Google Scholar 

  • Zhao, S. J., and R. S. Hanson. 1984 Variants of the obligate methanotroph isolate 761M capable of growth on glucose in the absence of methane Appl. Environ. Microbiol. 48 807–812

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Lidstrom, M.E. (2006). Aerobic Methylotrophic Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_20

Download citation

Publish with us

Policies and ethics