Advertisement

Electrodes for Nerve Recording and Stimulation

  • Jing-Quan LiuEmail author
  • Hong-Chang Tian
  • Xiao-Yang Kang
  • Ming-Hao Wang
Reference work entry
Part of the Micro/Nano Technologies book series (MNT)

Abstract

With the rapid development of MEMS fabrication technologies, versatile microelectrodes with different structures and functions have been designed and fabricated. The flexible MEMS microelectrodes exhibit multiaspect excellent characteristics compared to stiff microelectrodes based on silicon or SU-8, which comprising: lighter weight, smaller volume, better conforming to neural tissue, and lower fabrication cost.

This chapter mainly reviewed key technologies on flexible MEMS microelectrodes for neural interface in recent years, including: design and fabrication technology, fluidic channels, μLEDs, and electrode-tissue interface modification technology for performance improvement. Furthermore, the future directions of flexible MEMS microelectrodes were described including transparent and stretchable microelectrodes with characteristics of multifunction, high-density, biodegradation, and next-generation electrode-tissue interface modifications facilitated electrode efficacy and implantation safety.

The goal of this chapter is to provide the reader a broader overview of flexible MEMS technologies that can be applied together to solve problems in neural interface.

Keywords

MEMS Microelectrodes Neural Interface Conducting Polymer Nanotechnology 

References

  1. Abidian MR, Martin DC (2009) Multifunctional Nanobiomaterials for neural interfaces. Adv Funct Mater 19(4):573–585CrossRefGoogle Scholar
  2. Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly (3, 4-ethylenedioxythiophene) nanotubes. Adv Mater 21(37):3764–3770CrossRefGoogle Scholar
  3. Abidian MR, Daneshvar ED, Egeland BM, Kipke DR, Cederna PS, Urbanchek MG (2012) Hybrid conducting polymer-hydrogel conduits for axonal growth and neural tissue engineering. Adv Healthcare Mater 1(6):762–767CrossRefGoogle Scholar
  4. Al-bahrani MR, Ahmad W, Mehnane HF, Chen Y, Cheng Z, Gao Y (2015) Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-Micro Lett 7(3):298–306CrossRefGoogle Scholar
  5. Altuna EB, Cid E, Aivar P, Gal B, Berganzo J, Gabriel G, Guimera A, Villa R, Fernandez LJ, Menendez de la Prida L (2013) SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 13(7):1422–1430CrossRefGoogle Scholar
  6. Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N, Anderson DJ (2014) Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156(3):522–536CrossRefGoogle Scholar
  7. Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA (2014) Organic electrode coatings for next-generation neural interfaces. Front Neuroeng 7:15CrossRefGoogle Scholar
  8. Arter JA, Taggart DK, McIntire TM, Penner RM, Weiss GA (2010) Virus-PEDOT nanowires for biosensing. Nano Lett 10(12):4858–4862CrossRefGoogle Scholar
  9. Asplund M, von Holst H, Inganas O (2008) Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3(3):83–93CrossRefGoogle Scholar
  10. Asplund M, Nyberg T, Inganäs O (2010) Electroactive polymers for neural interfaces. Polym Chem 1(9):1374–1391CrossRefGoogle Scholar
  11. Au KM, Lu Z, Matcher SJ, Armes SP (2013) Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging. Biomaterials 34(35):8925–8940CrossRefGoogle Scholar
  12. Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81(6):2168–2175CrossRefGoogle Scholar
  13. Bongo M, Winther-Jensen O, Himmelberger S, Strakosas X, Ramuz M, Hama A, Stavrinidou E, Malliaras GG, Salleo A, Winther-Jensen B (2013) PEDOT:gelatin composites mediate brain endothelial cell adhesion. J Mater Chem B 1:3860–3867CrossRefGoogle Scholar
  14. Cho Y, Borgens RB (2013) Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth. J Mater Chem B 1(33):4166–4170CrossRefGoogle Scholar
  15. Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309CrossRefGoogle Scholar
  16. Cogan SF, Guzelian AA, Agnew WF, Yuen TG, Mccreery DB (2004) Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Meth 137(2):141CrossRefGoogle Scholar
  17. Cui XY, Martin DC (2003) Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensor Actuat B-Chem 89(1–2):92–102CrossRefGoogle Scholar
  18. Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3(3):139–143CrossRefGoogle Scholar
  19. Farina D, Yoshida K, Stieglitz T, Koch KP (2008) Multichannel thin-film electrode for intramuscular electromyographic recordings. J Appl Physiol 104(3):821–827CrossRefGoogle Scholar
  20. Ferguson JE, Boldt C, Redish AD (2009) Creating low-impedance tetrodes by electroplating with additives. Sensor Actuat A-Phys 156(2):388–393CrossRefGoogle Scholar
  21. Gao KP, Li G, Liao LY, Cheng J, Zhao JL, Xu YS (2013) Fabrication of flexible microelectrode arrays integrated with microfluidic channels for stable neural interfaces. Sensor Actuat A-Phys 197:9–14CrossRefGoogle Scholar
  22. Gomez N, Lee JY, Nickels JD, Schmidt CE (2007) Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the stimulation of cells. Adv Funct Mater 17(10):1645–1653CrossRefGoogle Scholar
  23. Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24CrossRefGoogle Scholar
  24. Hira R, Honkura NJ, Maruyama Y, Augustine G, Kasai H, Matsuzaki M (2009) Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Meth 179(2):258–263CrossRefGoogle Scholar
  25. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171CrossRefGoogle Scholar
  26. Hong X, Wu Z, Chen L, Wu F, Wei L, Yuan W (2014) Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett 6(3):191–199CrossRefGoogle Scholar
  27. Hsiao YS, Kuo CW, Chen P (2013) Multifunctional Graphene–PEDOT microelectrodes for on-Chip manipulation of human Mesenchymal stem cells. Adv Funct Mater 23(37):4649–4656CrossRefGoogle Scholar
  28. Huang YJ, Wu HC, Tai NH, Wang TW (2012) Carbon Nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8(18):2869–2877CrossRefGoogle Scholar
  29. Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable led device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70(1):124–127CrossRefGoogle Scholar
  30. Jarc M, Berniker M, Tresch MC (2013) FES control of isometric forces in the rat Hindlimb using many muscles. IEEE Trans Bio-Med Eng 60(5):1422–1430CrossRefGoogle Scholar
  31. Jeong JW, Mccall JG, Shin G, Zhang Y, Alhasani R, Kim M (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674CrossRefGoogle Scholar
  32. Jessin J, Yuefa L, Jinsheng Z, Jeffrey AL, Yong X (2011) Microfabrication of 3D neural probes with combined electrical and chemical interfaces. J Micromech Microeng 21(10):105011CrossRefGoogle Scholar
  33. Ji BW, Kang XY, Wang MH, Bao BF, Tian HC, Yang B, Chen X, Wang XL, Liu JQ (2017) Photoelectric neural interface combining wire-bondingμLEDS with iridium oxide microelectrodes for optogenetics, MEMS 2017, Las Vegas, 22–26 JanGoogle Scholar
  34. Kang XY, Liu JQ, Tian HC, Zhang C, Yang B, NuLi Y, Zhu HY, Yang CS (2014a) Controlled activation of iridium film for AIROF microelectrodes. Sensor Actuat B-Chem 190:601–611CrossRefGoogle Scholar
  35. Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2014b) Fabrication and electrochemical comparison of SIROF-AIROF-EIROF microelectrodes for neural interfaces. IEEE Eng Med Biol:478–481Google Scholar
  36. Kang XY, Liu JQ, Tian HC, Yang B, NuLi YN, Yang CS (2014c) Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation. J Microelectromech Syst 24(2)CrossRefGoogle Scholar
  37. Kang XY, Liu JQ, Tian HC, Du JC, Yang B, Zhu HY, NuLi YN Yang CS (2014d) Fabrication and degradation characteristic of sputtered iridium oxide neural microelectrodes for Fes application, MEMS 2014, San Francisco, 26–30 Jan, 616–619Google Scholar
  38. Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2015) Self-closed Parylene cuff electrode for peripheral nerve recording. J Microelectromech Syst 24(2):319–332CrossRefGoogle Scholar
  39. Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11(2):453–466CrossRefGoogle Scholar
  40. Kim H, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang YG, Hwang KC, Zakin MR, Litt B, Rogers JA (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRefGoogle Scholar
  41. Kozai TDY, Langhals NB, Patel PR, Deng XP, Zhang HN, Smith KL, Lahann J, Kotov NA, Kipke DR (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11(12):1065–1073CrossRefGoogle Scholar
  42. Kwon KY, Lee HM, Ghovanloo M, Weber A, Li W (2014) A wireless slanted optrode array with intergrated micro LEDs for optogenetics, MEMS 2014, San Francisco, 26–30 JanGoogle Scholar
  43. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335CrossRefGoogle Scholar
  44. Luo X, Weaver CL, Zhou DD, Greenberg R, Cui XT (2011) Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557CrossRefGoogle Scholar
  45. Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Mendez S (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3(39):17938–17944CrossRefGoogle Scholar
  46. Memberg WD, Stage TG, Kirsch RF (2014) A fully implanted intramuscular bipolar Myoelectric signal recording electrode. Neuromodulation 17(8):794–799CrossRefGoogle Scholar
  47. Metz S, Bertsch A, Bertrand D, Renaud P (2004) Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 19(10):1309–1318CrossRefGoogle Scholar
  48. Midrio M (2006) The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 98(1):1–21CrossRefGoogle Scholar
  49. Mitch WE, Goldberg AL (1996) Mechanisms of disease: mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway. New Engl J Med 335(25):1897–1905CrossRefGoogle Scholar
  50. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229CrossRefGoogle Scholar
  51. Ortiz-Catalan M, Branemark R, Hakansson B, Delbeke J (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 11(1):33CrossRefGoogle Scholar
  52. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on Graphene. Adv Mater 23(36),H263–H267CrossRefGoogle Scholar
  53. Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46(17):2910–2912CrossRefGoogle Scholar
  54. Pongrácz ZF, Márton G, Bérces Z, Ulbert I, Fürjes P (2013) Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sensor Actuat B-Chem 189:97–105CrossRefGoogle Scholar
  55. Poole-Warren L, Lovell N, Baek S, Green R (2010) Development of bioactive conducting polymers for neural interfaces. Expert Rev Med Devices 7(1):35–49CrossRefGoogle Scholar
  56. Quigley F, Razal JM, Kita M, Jalili R, Gelmi A, Penington A, Ovalle-Robles R, Baughman RH, Clark GM, Wallace GG (2012) Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms. Adv Healthc Mater 1(6):801–808CrossRefGoogle Scholar
  57. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) From the cover:functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 52:18129–18134CrossRefGoogle Scholar
  58. Receveur RAM, Lindemans FW, de Rooij NF (2007) Microsystem technologies for implantable applications. J Micromech Microeng 17(5):R50–R80CrossRefGoogle Scholar
  59. Robblee LS, Mchardy J, Agnew WF, Bullara LA (1983) Electrical stimulation with pt electrodes. Vii. Dissolution of pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Meth 9(4):301–308CrossRefGoogle Scholar
  60. Rui YF, Liu JQ, Wang YJ, Yang CS (2011) Parylene-based implantable pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442CrossRefGoogle Scholar
  61. Rui YF, Liu JQ, Yang B, Li KY, Yang CS (2012) Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation. Biomed Microdevices 14(2):367–373CrossRefGoogle Scholar
  62. Simon T, Kurup S, Larsson KC, Hori R, Tybrandt K, Goiny M, Jager EW, Berggren M, Canlon B, Richter-Dahlfors A (2009) Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat Mater 8(9):742–746CrossRefGoogle Scholar
  63. Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11(19):3287–3293CrossRefGoogle Scholar
  64. Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5):519–523CrossRefGoogle Scholar
  65. Tandon N, Cannizzaro C, Chao PHG, Maidhof R, Marsano A, Au HTH, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4(2):155–173CrossRefGoogle Scholar
  66. Thomas CK, Zaidner EY, Calancie B, Broton JG, Bigland-Ritchie BR (1997) Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp Neurol 148(2):414–423CrossRefGoogle Scholar
  67. Tian HC, Liu JQ, Du JC, Kang XY, Zhang C, Yang B, Chen X, Yang CS (2014a) Flexible intramuscular micro tube electrode combining electrical and chemical Interface. IEEE Eng Med Biol:6949–6952Google Scholar
  68. Tian HC, Liu JQ, Wei DX, Kang XY, Zhang C, Du JC, Yang B, Chen X, Zhu HY, NuLi YN, Yang CS (2014b) Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials 35(7):2120–2129CrossRefGoogle Scholar
  69. Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014c) Biotic and abiotic molecule dopants determining the electrochemical performance, stability and fibroblast behavior of conducting polymer for tissue interface. RSC Adv 4(88):47461–47471CrossRefGoogle Scholar
  70. Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014d) Poly(3,4-ethylenedioxythiophene)/Graphene oxide composite coating for electrode-tissue Interface. IEEE Eng Med Biol:1571–1574Google Scholar
  71. Tian HC, Liu JQ, Kang XY, He Q, Yang B, Chen X, Yang CS (2015) Flexible multi-channel microelectrode with fluidic paths for intramuscular stimulation and recording. Sensor Actuat A-Phys 228:28–39CrossRefGoogle Scholar
  72. Vallejo-Giraldo AK, Biggs MJP (2014) Biofunctionalisation of electrically conducting polymers. Drug Discov Today 19(1):88–94CrossRefGoogle Scholar
  73. Wang MH, Nikaido K, Kim Y, Ji BW, Tian HC, Kang XY, Yang CS, Yang B, Chen X, Wang XL, Zhang Y, Liu JQ (2017) Flexible cylindrical neural probe with graphene enchenced conductiive polymer for multi-mode BCI applications, MEMS 2017, Las Vegas, 22–26 JanGoogle Scholar
  74. Warden MR, Cardin JA, Deisseroth K (2014) Optical neural interfaces. Annu Rev Biomed Eng 16(16):103–129CrossRefGoogle Scholar
  75. Wells J, Kao C, Mariappan K, Albea J, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Optical stimulation of neural tissue in vivo. Opt Lett 30(5):504–506CrossRefGoogle Scholar
  76. Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202CrossRefGoogle Scholar
  77. Yang SY, Kim BN, Zakhidov AA, Taylor PG, Lee JK, Ober CK, Lindau M, Malliaras GG (2011) Detection of transmitter release from single living cells using conducting polymer microelectrodes. Adv Mater 23(24):H184–H188CrossRefGoogle Scholar
  78. Yang Z, Gao RG, Hu NT, Chai J, Cheng YW, Zhang LY, Wei H, Kong ESW, Zhang YF (2012) The prospective two-dimensional Graphene Nanosheets: preparation, Functionalization, and applications. Nano-Micro Lett 4(1):1–9CrossRefGoogle Scholar
  79. Yang Z, Zhang Y, Itoh T, Maeda R (2014) Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications. J Microelectromech Syst 20:21–29CrossRefGoogle Scholar
  80. Yoon H, Jang J (2009) Conducting-polymer Nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19(10):1567–1576CrossRefGoogle Scholar
  81. Yoshida K, Farina D, Akay M, Jensen W (2010) Multichannel Intraneural and intramuscular techniques for multiunit recording and use in active prostheses. Proc IEEE 98(3):432–449CrossRefGoogle Scholar
  82. Yu L, Wu H, Wu B, Wang Z, Cao H, Fu C, Jia N (2014) Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett 6(3):258–267CrossRefGoogle Scholar
  83. Zhang AMA, Adamantidis A, De LL, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8(8):577CrossRefGoogle Scholar
  84. Zhang Z, Li SW, Xue C, Yang S, Zhang W (2014) A bionic fish cilia median-low frequency three-dimensional piezoresistive MEMS vector hydrophone. Nano-Micro Lett 6(2):136–142CrossRefGoogle Scholar
  85. Zhao Y (2009) Investigating electrical field-affected skeletal myogenesis using a microfabricated electrode array. Sensor Actuat A-Phys 154(2):281–287CrossRefGoogle Scholar
  86. Ziegler TS, Takeuchi S (2006) Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of Parylene. j. Microelectromech Syst 15(6):1477–1482CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jing-Quan Liu
    • 1
    Email author
  • Hong-Chang Tian
    • 1
  • Xiao-Yang Kang
    • 1
  • Ming-Hao Wang
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations