Skip to main content

The Aerobic Methane Oxidizing Bacteria (Methanotrophs)

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Aerobic methane oxidizing bacteria (methanotrophs) have the unique ability to grow on methane as their sole source of carbon and energy. They are ubiquitous in the environment and play a major role in removal from the biosphere of the greenhouse gas methane before it is released into the atmosphere. Methanotrophs can be divided into two groups: the Type I methanotrophs and the Type II methanotrophs. Recently however, extremely thermophilic, acidophilic methanotrophs from the phylum Verrucomicrobia have also been isolated, thus expanding both the taxonomic diversity and physiological range of aerobic methanotrophy. Methanotrophs were until recently regarded as obligate organisms, only growing on one-carbon compounds, but the discovery of the facultative methanotroph Methylocella silvestris has changed this view. The methanotrophs can co-oxidize a considerable number of organic compounds and also have considerable potential in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony C (1982) The Biochemistry of Methylotrophs. New York: Academic Press.

    Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67: 4009–4016.

    Article  PubMed  CAS  Google Scholar 

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. Strain SC2. Proc Natl Acad Sci USA 105: 10203–10208.

    Article  PubMed  CAS  Google Scholar 

  • Bodrossy L, Holmes EM, Holmes, AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168: 493–503.

    Article  PubMed  CAS  Google Scholar 

  • Bodrossy L, Kovacs KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidizing γ-proteobacterium. FEMS Microbiol Lett 170: 335–341.

    CAS  Google Scholar 

  • Borodina E, Nichol T, Dumont MG, Smith TJ, Murrell JC (2007) Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 73: 6460–6467.

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP (2006) The methanotrophs- the families Methylococcaceae and Methylocystaceae. Prokaryotes 5: 266–289.

    Article  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143: 1451–1459.

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Sly LI, Hayward AC (1991) Contribution of genome characteristics to the assessment of the taxonomy of obligate methanotrophs. Int J Syst Bacteriol 41: 301–305.

    Article  Google Scholar 

  • Bowman JP, Sly, LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs; description of Methylobacter gen. nov. emendation of Methylococcus, validation of Methylosinus and Methylocystis species and proposal that the family Methylococacceae includes only type I methanotrophs. Int J Syst Bacteriol 43: 735–753.

    Article  Google Scholar 

  • Bowman JP, Sly LI, Stackebrandt E (1995) The phylogenetic position of the Methylococcaceae. Int J Syst Bacteriol 45: 182–185.

    Article  PubMed  CAS  Google Scholar 

  • Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4: 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Csaki R, Bodrossy L, Klemm J, Murrell JC, Kovacs KL (2003) Cloning, sequencing and mutational analysis of genes involved in the copper dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Microbiology (UK) 149: 1785–1795.

    Article  CAS  Google Scholar 

  • Csaki R, Hanczar T, Bodrossy L, Murrell JC, Kovacs KL (2001) Molecular characterisation of structural genes encoding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 205: 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Dalton H (2005) The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane oxidizing bacteria. Phil Trans R Soc London B Biol Sci 360: 1207–1222.

    Article  CAS  Google Scholar 

  • Davies SL, Whittenbury R (1970) Fine structure of methane and other hydrocarbon utilising bactera. J Gen Microbiol 61: 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN (2002) Methanotrophic bacteria of acid Sphagnum bogs. Microbiology 71: 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, Chidthaisong A, et al. (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield P (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187: 4665–4667.

    Article  PubMed  CAS  Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6: 725–739.

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53: 1231–1239.

    Article  PubMed  CAS  Google Scholar 

  • Dunfield, PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Eller G, Frenzel P (2001) Changes in activity and community structure of methane oxidising bacteria over the growth period of rice. Appl Environ Microbiol 67: 2395–2403.

    Article  PubMed  CAS  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76: 223–241.

    Article  PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439–471.

    PubMed  CAS  Google Scholar 

  • Hou S, et al. (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methyloacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3: 26–51.

    Article  PubMed  Google Scholar 

  • Islam, T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105: 300–304.

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium. System Appl Microbiol 22: 565–572.

    Google Scholar 

  • Lidstrom (2006) Aerobic methylotrophic prokaryotes. Prokaryotes 2: 618–634.

    Article  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74: 1305–1315.

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8: 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko MV, Vasilyeva LV, Zavarzin GA, Savel’eva ND, Lysenko M, Mityushina LL, Khmelenina VN, Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiya 65: 339–343.

    Google Scholar 

  • Op den Camp HJP, Islam T, Stott MB, Harhangi HR, Hynes H, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Reports (doi: 10.1111/j.1758-2229.2009.00022.x).

    Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874–878.

    Article  PubMed  CAS  Google Scholar 

  • Rahalkar M, Schink B (2007) Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. Appl Environ Microbiol 73: 4389–4394.

    Article  PubMed  CAS  Google Scholar 

  • Ricke P, Kube M, Nakagawa S, Erkel C, Reinhardt R, Liesack W (2005) First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidophila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl Environ Microbiol 71: 7472–7482.

    Article  PubMed  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Murrell JC (2008) Life in the extreme: thermophilic methanotrophy. Trends Microbiol 16:190–193.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. Strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73: 1721–1728.

    Article  PubMed  CAS  Google Scholar 

  • Smith TJ, Dalton H (2004) Biocatalysis by methane monooxygenase and its implications for the petroleum industry. In Petroleum Biotechnology: Developments and Perspectives Studies in Surface Science and Catalysis, vol. 151. R Vazquez-Duhalt and R Qintero-Ramirez (eds.). Amsterdam: Elsevier, pp. 177–192.

    Chapter  Google Scholar 

  • Theisen AR, Ali HM, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58: 682–692.

    Article  PubMed  CAS  Google Scholar 

  • Theisen AR, Murrell JC (2005)Facultative methanotrophs revisited. J Bacteriol 187: 4303–4305.

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177: 123–131.

    PubMed  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methylotrophy. Adv Appl Microbiol 63: 183–229.

    Article  PubMed  CAS  Google Scholar 

  • Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55: 1877–1884.

    Article  PubMed  CAS  Google Scholar 

  • Ward N, et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLOS Biology 10: 1616–1628

    Google Scholar 

  • Whittenbury R, Davies SL, Davey JF (1970b) Exospores and cysts formed by methane oxidising bacteria. J Gen Microbiol 61: 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970a) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61: 205–218.

    PubMed  CAS  Google Scholar 

  • Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28: 335–352.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Murrell, J.C. (2010). The Aerobic Methane Oxidizing Bacteria (Methanotrophs). In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_143

Download citation

Publish with us

Policies and ethics