Advertisement

Platforms for Plant-Based Protein Production

  • Jianfeng Xu
  • Melissa Towler
  • Pamela J. Weathers
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Plant molecular farming depends on a diversity of plant systems for production of useful recombinant proteins. These proteins include protein biopolymers, industrial proteins and enzymes, and therapeutic proteins. Plant production systems include microalgae, cells, hairy roots, moss, and whole plants with both stable and transient expression. Production processes involve a narrowing diversity of bioreactors for cell, hairy root, microalgae, and moss cultivation. For whole plants, both field and automated greenhouse cultivation methods are used with products expressed and produced either in leaves or seeds. Many successful expression systems now exist for a variety of different products with a list of increasingly successful commercialized products. This chapter provides an overview and examples of the current state of plant-based production systems for different types of recombinant proteins.

Keywords

Molecular farming Recombinant protein expression Therapeutic proteins Transient expression Bioreactor 

References

  1. 1.
    Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222PubMedCrossRefGoogle Scholar
  2. 2.
    Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67PubMedCrossRefGoogle Scholar
  3. 3.
    Sharma AK, Sharma MK (2009) Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 27:811–832PubMedCrossRefGoogle Scholar
  4. 4.
    Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654PubMedCrossRefGoogle Scholar
  5. 5.
    Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29:278–299PubMedCrossRefGoogle Scholar
  6. 6.
    Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606PubMedCrossRefGoogle Scholar
  7. 7.
    Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30:279–283CrossRefGoogle Scholar
  8. 8.
    Shih SMH, Doran PM (2009) Foreign protein production using plant cell and organ cultures: advantages and limitations. Biotechnol Adv 27:1036–1042PubMedCrossRefGoogle Scholar
  9. 9.
    Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 9:271–294CrossRefGoogle Scholar
  10. 10.
    Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598PubMedCrossRefGoogle Scholar
  11. 11.
    Shil PK, Kwon K-C, Zhu P, Verma A, Daniell H, Li Q (2014) Oral delivery of ACE2/Ang-(1–7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis. Mol Ther 22:2069–2082PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Shaaltiel Y, Gingis-Velitski S, Tzaban S, Fiks N, Tekoah Y, Aviezer D (2015) Plant-based oral delivery of β-glucocerebrosidase as an enzyme replacement therapy for Gaucher’s disease. Plant Biotechnol J 13:1033–1040PubMedCrossRefGoogle Scholar
  13. 13.
    Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J (2012) GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv 30:434–439PubMedCrossRefGoogle Scholar
  14. 14.
    Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Conley AJ, Joensuu JJ, Menassa R, Brandle JE (2009) Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol 7:48PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Conley AJ, Joensuu JJ, Richman A, Menassa R (2011) Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Plant Biotechnol J 9:419–433PubMedCrossRefGoogle Scholar
  17. 17.
    Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249PubMedCrossRefGoogle Scholar
  18. 18.
    Shoseyov O, Posen Y, Grynspan F (2013) Human recombinant type I collagen produced in plants. Tissue Eng Part A 19:1527–1533PubMedCrossRefGoogle Scholar
  19. 19.
    Shilo S, Roth S, Amzel T, Harel-Adar T, Tamir E, Grynspan F, Shoseyov O (2013) Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel. Tissue Eng Part A 19:1519–1526PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Willard JJ, Drexler JW, Das A, Roy S, Shilo S, Shoseyov O, Powell HM (2013) Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng Part A 19:1507–1518PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18:374–379PubMedCrossRefGoogle Scholar
  22. 22.
    Scheller J, Guhrs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Eisoldt L, Smith A, Scheibel T (2011) Decoding the secrets of spider silk. Mater Today 14:80–86CrossRefGoogle Scholar
  24. 24.
    Yang J, Barr LA, Fahnestock SR, Liu Z-B (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14:313–324PubMedCrossRefGoogle Scholar
  25. 25.
    Rising A, Johansson J (2015) Toward spinning artificial spider silk. Nat Chem Biol 11:309–315PubMedCrossRefGoogle Scholar
  26. 26.
    Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711–720PubMedCrossRefGoogle Scholar
  27. 27.
    Basaran P, Rodriguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172PubMedCrossRefGoogle Scholar
  28. 28.
    Christou P, Stoger E, Twyman RM (2008) Monocot expression systems for molecular farming. In: Protein science encyclopedia. Wiley-Blackwell, Weinheim, pp55–67Google Scholar
  29. 29.
    Davies HM (2010) Review article: commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8:845–861PubMedCrossRefGoogle Scholar
  30. 30.
    De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563PubMedCrossRefGoogle Scholar
  31. 31.
    Yusibov V, Kushnir N, Streatfield SJ (2016) Antibody production in plants and green algae. Annu Rev Plant Biol 67:669–701PubMedCrossRefGoogle Scholar
  32. 32.
    Vunsh R, Li J, Hanania U, Edelman M, Flaishman M, Perl A, Wisniewski JP, Freyssinet G (2007) High expression of transgene protein in Spirodela. Plant Cell Rep 26:1511–1519PubMedCrossRefGoogle Scholar
  33. 33.
    McDonald KA, Hong LM, Trombly DM, Xie Q, Jackman AP (2005) Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol Prog 21:728–734PubMedCrossRefGoogle Scholar
  34. 34.
    Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204PubMedCrossRefGoogle Scholar
  35. 35.
    Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587PubMedCrossRefGoogle Scholar
  36. 36.
    Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23:559–565PubMedCrossRefGoogle Scholar
  37. 37.
    Paccalet T, Bardor M, Rihouey C, Delmas F, Chevalier C, D’Aoust MA, Faye L, Vézina L, Gomord V, Lerouge P (2007) Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes. Plant Biotechnol J 5:16–25PubMedCrossRefGoogle Scholar
  38. 38.
    Bakker H, Rouwendal GJA, Karnoup AS, Florack DEA, Stoopen GM, Helsper JPFG, van Ree R, van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid β-1, 4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci 103:7577–7582PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schähs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5:657–663PubMedCrossRefGoogle Scholar
  40. 40.
    Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H, Mach L, Glössl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402PubMedCrossRefGoogle Scholar
  41. 41.
    Vézina LP, Faye L, Lerouge P, D’Aoust MA, Marquet-Blouin E, Burel C, Lavoie PO, Bardor M, Gomord V (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455PubMedCrossRefGoogle Scholar
  42. 42.
    Aviezer D, Almon-Brill E, Shaaltiel Y, Galili G, Chertkoff R, Hashmueli S, Galun E, Zimran A (2009) Novel enzyme replacement therapy for Gaucher disease: ongoing phase III clinical trial with recombinant human glucocerebrosidase expressed in plant cells. Mol Genet Metab 96:S13–S14CrossRefGoogle Scholar
  43. 43.
    Aviezer D, Almon-Brill E, Shaaltiel Y, Chertkoff R, Hashmueli S, Zimran A (2010) Novel enzyme replacement therapy for Gaucher disease: phase III pivotal clinical trial with plant cell expressed recombinant glucocerebrosidase (prGCD) – taliglucerase alpha. Mol Genet Metab 99:S9–S10CrossRefGoogle Scholar
  44. 44.
    Shaaltiel Y, Tekoah Y (2016) Plant specific N-glycans do not have proven adverse effects in humans. Nat Biotechnol 34:706–708PubMedCrossRefGoogle Scholar
  45. 45.
    Faye L, Gomord V (2010) Success stories in molecular farming—a brief overview. Plant Biotechnol J 8:525–528PubMedCrossRefGoogle Scholar
  46. 46.
    Cramer CL, Dolan MC, Reidy MJ (2008) Methods of delivery of molecules to cells using a ricin subunit and compositions relating to same. In: Google PatentsGoogle Scholar
  47. 47.
    Phoolcharoen W, Dye JM, Kilbourne J, Piensook K, Pratt WD, Arntzen CJ, Chen Q, Mason HS, Herbst-Kralovetz MM (2011) A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. Proc Natl Acad Sci 108:20695–20700PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Xu J, Tan L, Goodrum KJ, Kieliszewski MJ (2007) High-yields and extended serum half-life of human interferon alpha 2b expressed in tobacco cells as Arabinogalactan-protein fusions. Biotechnol Bioeng 97:997–1008PubMedCrossRefGoogle Scholar
  49. 49.
    Xu J, Okada S, Tan L, Goodrum KJ, Kopchick JJ, Kieliszewski MJ (2010) Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life. Transgenic Res 19:849–867PubMedCrossRefGoogle Scholar
  50. 50.
    Xu J, Zhang N (2014) On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. Pharm Bioprocess 2:499–518PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19:5531–5542PubMedCrossRefGoogle Scholar
  52. 52.
    Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107:278–289PubMedCrossRefGoogle Scholar
  53. 53.
    Vasilev N, Gromping U, Lipperts A, Raven N, Fischer R, Schillberg S (2013) Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol J 11:867–874PubMedCrossRefGoogle Scholar
  54. 54.
    Yano A, Maeda F, Takekoshi M (2004) Transgenic tobacco cells producing the human monoclonal antibody to hepatitis B virus surface antigen. J Med Virol 73:208–215PubMedCrossRefGoogle Scholar
  55. 55.
    Kim TG, Baek MY, Lee EK, Kwon TH, Yang MS (2008) Expression of human growth hormone in transgenic rice cell suspension culture. Plant Cell Rep 27:885–891PubMedCrossRefGoogle Scholar
  56. 56.
    Shin YJ, Hong SY, Kwon TH, Jang YS, Yang MS (2003) High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol Bioeng 82:778–783PubMedCrossRefGoogle Scholar
  57. 57.
    Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590PubMedCrossRefGoogle Scholar
  58. 58.
    Kizhner T, Azulay Y, Hainrichson M, Tekoah Y, Arvatz G, Shulman A, Ruderfer I, Aviezer D, Shaaltiel Y (2015) Characterization of a chemically modified plant cell culture expressed human alpha-Galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metab 114:259–267PubMedCrossRefGoogle Scholar
  59. 59.
    Shin YJ, Lee NJ, Kim J, An XH, Yang MS, Kwon TH (2010) High-level production of bioactive heterodimeric protein human interleukin-12 in rice. Enzyme Microb Technol 46:347–351CrossRefGoogle Scholar
  60. 60.
    Liu YK, Li YT, Lu CF, Huang LF (2015) Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy. N Biotechnol 32:328–334PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang N, Gonzalez M, Savary B, Xu J (2016) High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: process development. Biotechnol J 11:497–506PubMedCrossRefGoogle Scholar
  62. 62.
    Hakkinen ST, Raven N, Henquet M, Laukkanen ML, Anderlei T, Pitkanen JP, Twyman RM, Bosch D, Oksman-Caldentey KM, Schillberg S, Ritala A (2014) Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng 111:336–346PubMedCrossRefGoogle Scholar
  63. 63.
    Lonoce C, Salem R, Marusic C, Jutras PV, Scaloni A, Salzano AM, Lucretti S, Steinkellner H, Benvenuto E, Donini M (2016) Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures. Biotechnol J 11:1209–1220PubMedCrossRefGoogle Scholar
  64. 64.
    Rukavtsova EB, Abramikhina TV, Shulga NY, Bykov VA, Bur’yanov YI (2007) Tissue specific expression of hepatitis B virus surface antigen in transgenic plant cells and tissue culture. Russ J Plant Physiol 54:770–775CrossRefGoogle Scholar
  65. 65.
    Martinez C, Petruccelli S, Giulietti AMA, Alvarez MA (2005) Expression of the antibody 14D9 in Nicotiana tabacum hairy roots. Electron J Biotechnol 8:170–176CrossRefGoogle Scholar
  66. 66.
    Parsons J, Wirth S, Dominguez M, Bravo-Almonacid F, Giulietti AM, Rodriguez Talou J (2010) Production of human epidermal growth factor (hEGF) by in vitro cultures of nicotiana tabacum: effect of tissue differentiation and sodium nitroprusside addition. Int J Biotechnol Biochem 6:131–138Google Scholar
  67. 67.
    Pham NB, Schafer H, Wink M (2012) Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol J 7:537–545PubMedCrossRefGoogle Scholar
  68. 68.
    Huet Y, Ekouna JP, Caron A, Mezreb K, Boitel-Conti M, Guerineau F (2014) Production and secretion of a heterologous protein by turnip hairy roots with superiority over tobacco hairy roots. Biotechnol Lett 36:181–190PubMedCrossRefGoogle Scholar
  69. 69.
    Kim SR, Sim JS, Ajjappala H, Kim YH, Hahn BS (2012) Expression and large-scale production of the biochemically active human tissue-plasminogen activator in hairy roots of Oriental melon (Cucumis melo). J Biosci Bioeng 113:106–111PubMedCrossRefGoogle Scholar
  70. 70.
    Nabiabad HS, Piri K, Amini M (2016) Expression of active chimeric-tissue plasminogen activator in tobacco hairy roots, Identification of a DNA aptamer and purification by aptamer functionalized-MWCNTs chromatography. Protein Expr Purif. doi:10.1016/j.pep.2016.02.004Google Scholar
  71. 71.
    Baur A, Reski R, Gorr G (2005) Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnol J 3:331–340PubMedCrossRefGoogle Scholar
  72. 72.
    Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G, Reski R, Decker EL (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523PubMedCrossRefGoogle Scholar
  73. 73.
    Weise A, Altmann F, Rodriguez-Franco M, Sjoberg ER, Baumer W, Launhardt H, Kietzmann M, Gorr G (2007) High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Delta-fuc-t Delta-xyl-t mutant. Plant Biotechnol J 5:389–401PubMedCrossRefGoogle Scholar
  74. 74.
    Parsons J, Altmann F, Arrenberg CK, Koprivova A, Beike AK, Stemmer C, Gorr G, Reski R, Decker EL (2012) Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotechnol J 10:851–861PubMedCrossRefGoogle Scholar
  75. 75.
    Buttner-Mainik A, Parsons J, Jerome H, Hartmann A, Lamer S, Schaaf A, Schlosser A, Zipfel PF, Reski R, Decker EL (2011) Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnol J 9:373–383PubMedCrossRefGoogle Scholar
  76. 76.
    Orellana-Escobedo L, Rosales-Mendoza S, Romero-Maldonado A, Parsons J, Decker EL, Monreal-Escalante E, Moreno-Fierros L, Reski R (2015) An Env-derived multi-epitope HIV chimeric protein produced in the moss Physcomitrella patens is immunogenic in mice. Plant Cell Rep 34:425–433PubMedCrossRefGoogle Scholar
  77. 77.
    Niederkrüger H, Dabrowska-Schlepp P, Schaaf A (2014) Suspension culture of plant cells under phototrophic conditions. In: Meyer H-P, Schmidhalter DR (eds) Industrial scale suspension culture of living cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 259–292Google Scholar
  78. 78.
    Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology (N Y) 8:217–221Google Scholar
  79. 79.
    Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:297PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Huang TK, McDonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J 45:168–184CrossRefGoogle Scholar
  81. 81.
    Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ozawa K, Takaiwa F (2010) Highly efficient Agrobacterium-mediated transformation of suspension-cultured cell clusters of rice (Oryza sativa L.). Plant Sci 179:333–337CrossRefGoogle Scholar
  83. 83.
    Trexler MM, McDonald KA, Jackman AP (2005) A cyclical semicontinuous process for production of human alpha 1-antitrypsin using metabolically induced plant cell suspension cultures. Biotechnol Prog 21:321–328PubMedCrossRefGoogle Scholar
  84. 84.
    Fischer R, Schillberg S, Buyel JF, Twyman RM (2013) Commercial aspects of pharmaceutical protein production in plants. Curr Pharm Des 19:5471–5477PubMedCrossRefGoogle Scholar
  85. 85.
    Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30:1171–1184PubMedCrossRefGoogle Scholar
  86. 86.
    Havenith H, Raven N, Di Fiore S, Fischer R, Schillberg S (2014) Image-based analysis of cell-specific productivity for plant cell suspension cultures. Plant Cell Tiss Org Cult 117:393–399CrossRefGoogle Scholar
  87. 87.
    James E, Lee JM (2006) Loss and recovery of protein productivity in genetically modified plant cell lines. Plant Cell Rep 25:723–727PubMedCrossRefGoogle Scholar
  88. 88.
    Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Biotechnol 10:151–155PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wongsamuth R, Doran PM (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54:401–415PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kowalczyk T, Lucka M, Szemraj J, Sakowicz T (2016) Hairy roots culture as a source of valuable biopharmaceuticals. Postepy Hig Med Dosw (Online) 70:1–9CrossRefGoogle Scholar
  93. 93.
    Woods RR, Geyer BC, Mor TS (2008) Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol 8:95PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gaume A, Komarnytsky S, Borisjuk N, Raskin I (2003) Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 21:1188–1193PubMedCrossRefGoogle Scholar
  95. 95.
    Hood EE, Cramer CL, Medrano G, Xu J (2012) Protein targeting: strategic planning for optimizing protein products through plant biotechnology. In: Altman A, Hasagawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st century. Elsevier, Amsterdam, pp 35–54CrossRefGoogle Scholar
  96. 96.
    Nopo L, Woffenden BJ, Reed DG, Buswell S, Zhang C, Medina-Bolivar F (2012) Super-promoter:TEV, a powerful gene expression system for tobacco hairy roots. Methods Mol Biol 824:501–526PubMedCrossRefGoogle Scholar
  97. 97.
    Peebles CAM, Gibson SI, Shanks JV, San KY (2007) Long-term maintenance of a transgenic Catharanthus roseus hairy root line. Biotechnol Prog 23:1517–1518PubMedCrossRefGoogle Scholar
  98. 98.
    Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Parsons J, Altmann F, Graf M, Stadlmann J, Reski R, Decker EL (2013) A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Sci Rep 3:3019PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    von Stackelberg M, Rensing SA, Reski R (2006) Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites. BMC Plant Biol 6:9CrossRefGoogle Scholar
  101. 101.
    Schuster M, Jost W, Mudde GC, Wiederkum S, Schwager C, Janzek E, Altmann F, Stadlmann J, Stemmer C, Gorr G (2007) In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol J 2:700–708PubMedCrossRefGoogle Scholar
  102. 102.
    Kircheis R, Halanek N, Koller I, Jost W, Schuster M, Gorr G, Hajszan K, Nechansky A (2012) Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314. MAbs 4:532–541PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Reski R, Parsons J, Decker EL (2015) Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol J 13:1191–1198PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Huether CM, Lienhart O, Baur A, Stemmer C, Gorr G, Reski R, Decker EL (2005) Glyco-engineering of moss lacking plant-specific sugar residues. Plant Biol (Stuttg) 7:292–299CrossRefGoogle Scholar
  105. 105.
    Decker EL, Reski R (2012) Glycoprotein production in moss bioreactors. Plant Cell Rep 31:453–460PubMedCrossRefGoogle Scholar
  106. 106.
    Decker EL, Parsons J, Reski R (2014) Glyco-engineering for biopharmaceutical production in moss bioreactors. Front Plant Sci 5:346PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Huang T-K, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30:398–409PubMedCrossRefGoogle Scholar
  109. 109.
    Georgiev MI, Eibl R, Zhong J-J (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Nohynek L, Bailey M, Tähtiharju J, Seppänen-Laakso T, Rischer H, Oksman-Caldentey KM, Puupponen-Pimiä R (2014) Cloudberry (Rubus chamaemorus) cell culture with bioactive substances: establishment and mass propagation for industrial use. Eng Life Sci 14:667–675CrossRefGoogle Scholar
  111. 111.
    Reuter LJ, Bailey MJ, Joensuu JJ, Ritala A (2014) Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells. Plant Biotechnol J 12:402–410PubMedCrossRefGoogle Scholar
  112. 112.
    Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Development of a low capital investment reactor system: application for plant cell suspension culture. Biotechnol Prog 15:114–122PubMedCrossRefGoogle Scholar
  113. 113.
    Raven N, Rasche S, Kuehn C, Anderlei T, Klockner W, Schuster F, Henquet M, Bosch D, Buchs J, Fischer R, Schillberg S (2015) Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor. Biotechnol Bioeng 112:308–321PubMedCrossRefGoogle Scholar
  114. 114.
    Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49PubMedCrossRefGoogle Scholar
  115. 115.
    Shaaltiel Y, Kirshner Y, Shtainiz A, Naos Y, Shneor Y (2008) Large scale disposable bioreactor. In: Google PatentsGoogle Scholar
  116. 116.
    Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y (2015) Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol J 13:1199–1208PubMedCrossRefGoogle Scholar
  117. 117.
    Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A, Dolgov S (2015) High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol 57:653–661PubMedCrossRefGoogle Scholar
  118. 118.
    Stomp AM (2005) The duckweeds: a valuable plant for biomanufacturing. Biotechnol Annu Rev 11:69–99PubMedCrossRefGoogle Scholar
  119. 119.
    Rival S, Wisniewski JP, Langlais A, Kaplan H, Freyssinet G, Vancanneyt G, Vunsh R, Perl A, Edelman M (2008) Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res 17:503–513PubMedCrossRefGoogle Scholar
  120. 120.
    Popov SV, Golovchenko VV, Ovodova RG, Smirnov VV, Khramova DS, Popova GY, Ovodov YS (2006) Characterisation of the oral adjuvant effect of lemnan, a pectic polysaccharide of Lemna minor L. Vaccine 24:5413–5419PubMedCrossRefGoogle Scholar
  121. 121.
    Yamamoto YT, Rajbhandari N, Lin X, Bergmann BA, Nishimura Y, Stomp AM (2001) Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell Dev Biol Plant 37:349–353CrossRefGoogle Scholar
  122. 122.
    Sun Y, Cheng JJ, Himmel ME, Skory CD, Adney WS, Thomas SR, Tisserat B, Nishimura Y, Yamamoto YT (2007) Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour Technol 98:2866–2872PubMedCrossRefGoogle Scholar
  123. 123.
    Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597PubMedCrossRefGoogle Scholar
  124. 124.
    Spencer D, Dickey LF, Gasdaska JR, Wang X, Cox KM, Peele CG (2010) Expression of plasminogen and microplasminogen in duck weed. United States Patent No 7659445Google Scholar
  125. 125.
    De Leede LG, Humphries JE, Bechet AC, Van Hoogdalem EJ, Verrijk R, Spencer DG (2008) Novel controlled-release Lemna-derived IFN-alpha2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical trial. J Interferon Cytokine Res 28:113–122PubMedCrossRefGoogle Scholar
  126. 126.
    Guo X, Bublot M, Pritchard N, Dickey L, Thomas C, Swayne DE (2009) Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge In: Abstracts of the 7th international symposium on avian influenza 2009. Athens, p 62Google Scholar
  127. 127.
    Bertran K, Thomas C, Guo X, Bublot M, Pritchard N, Regan JT, Cox KM, Gasdaska JR, Dickey LF, Kapczynski DR, Swayne DE (2015) Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens. Vaccine 33:3456–3462PubMedCrossRefGoogle Scholar
  128. 128.
    Potvin G, Zhang ZS (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918PubMedCrossRefGoogle Scholar
  129. 129.
    Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5:225–235PubMedCrossRefGoogle Scholar
  131. 131.
    Barrera DJ, Mayfield SP (2013) High-value recombinant protein production in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Blackwell Publishing Ltd., ChichesterGoogle Scholar
  132. 132.
    Yao J, Weng Y, Dickey A, Wang KY (2015) Plants as factories for human pharmaceuticals: applications and challenges. Int J Mol Sci 16:28549–28565PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Dance A (2010) From pond scum to pharmacy shelf. Nat Med 16:146–149PubMedCrossRefGoogle Scholar
  134. 134.
    Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104:663–673PubMedGoogle Scholar
  135. 135.
    Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436PubMedCrossRefGoogle Scholar
  136. 136.
    Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M (2014) Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Front Plant Sci 5:359PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18:126–133PubMedCrossRefGoogle Scholar
  139. 139.
    Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189CrossRefGoogle Scholar
  140. 140.
    Ganapathy M (2016) Plants as bioreactors-a review. Adv Tech Biol Med 4:161Google Scholar
  141. 141.
    Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221PubMedCrossRefGoogle Scholar
  143. 143.
    Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578PubMedCrossRefGoogle Scholar
  144. 144.
    Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB, Lehner T (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4:601–606PubMedCrossRefGoogle Scholar
  145. 145.
    Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158PubMedCrossRefGoogle Scholar
  146. 146.
    Hehle VK, Paul MJ, Roberts VA, van Dolleweerd CJ, Ma JK (2016) Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. FASEB J 30:1590–1598PubMedCrossRefGoogle Scholar
  147. 147.
    Ma JK, Drossard J, Lewis D, Altmann F, Boyle J, Christou P, Cole T, Dale P, van Dolleweerd CJ, Isitt V, Katinger D, Lobedan M, Mertens H, Paul MJ, Rademacher T, Sack M, Hundleby PA, Stiegler G, Stoger E, Twyman RM, Vcelar B, Fischer R (2015) Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J 13:1106–1120PubMedCrossRefGoogle Scholar
  148. 148.
    Triguero A, Cabrera G, Rodriguez M, Soto J, Zamora Y, Perez M, Wormald MR, Cremata JA (2011) Differential N-glycosylation of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently induces similar in vivo stability in mice. Plant Biotechnol J 9:1120–1130PubMedCrossRefGoogle Scholar
  149. 149.
    Pogrebnyak N, Golovkin M, Andrianov V, Spitsin S, Smirnov Y, Egolf R, Koprowski H (2005) Severe acute respiratory syndrome (SARS) S protein production in plants: development of recombinant vaccine. Proc Natl Acad Sci U S A 102:9062–9067PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Turchinovich AA, Deineko EV, Filipenko ML, Khrapov EA, Zagorskaya AA, Filipenko EA, Sennikov SV, Kozlov VA, Shumnyi VK (2004) Transgenic tobacco plants producing human interleukin-18. Dokl Biochem Biophys 395:104–107PubMedCrossRefGoogle Scholar
  151. 151.
    Zhang B, Yang YH, Lin YM, Rao Q, Zheng GG, Wu KF (2003) Expression and production of bioactive human interleukin-18 in transgenic tobacco plants. Biotechnol Lett 25:1629–1635PubMedCrossRefGoogle Scholar
  152. 152.
    Harrison MD, Zhang Z, Shand K, Chong BF, Nichols J, Oeller P, O’Hara IM, Doherty WO, Dale JL (2014) The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse. Biotechnol Biofuels 7:131PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Brunecky R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock MJ, Decker SR (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4:1PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Fischer R, Vasilev N, Twyman RM, Schillberg S (2015) High-value products from plants: the challenges of process optimization. Curr Opin Biotechnol 32:156–162PubMedCrossRefGoogle Scholar
  155. 155.
    Saberianfar R, Joensuu JJ, Conley AJ, Menassa R (2015) Protein body formation in leaves of Nicotiana benthamiana: a concentration-dependent mechanism influenced by the presence of fusion tags. Plant Biotechnol J 13:927–937PubMedCrossRefGoogle Scholar
  156. 156.
    Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648PubMedCrossRefGoogle Scholar
  157. 157.
    Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13PubMedCrossRefGoogle Scholar
  158. 158.
    Waheed MT, Ismail H, Gottschamel J, Mirza B, Lossl AG (2015) Plastids: the green frontiers for vaccine production. Front Plant Sci 6:1005PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Kohli N, Westerveld DR, Ayache AC, Verma A, Shil P, Prasad T, Zhu P, Chan SL, Li Q, Daniell H (2014) Oral delivery of bioencapsulated proteins across blood-brain and blood-retinal barriers. Mol Ther J Am Soc Gene Ther 22:535–546CrossRefGoogle Scholar
  161. 161.
    Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Kwon KC, Verma D, Singh ND, Herzog R, Daniell H (2013) Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 65:782–799PubMedCrossRefGoogle Scholar
  163. 163.
    Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101PubMedCrossRefGoogle Scholar
  164. 164.
    Kwon KC, Daniell H (2016) Oral delivery of protein drugs bioencapsulated in plant cells. Mol Ther 24:1342–1350PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, Norikane JH, Streatfield SJ, Herzog RW, Daniell H (2015) Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 70:84–93PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H (2015) Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnol J 13:1023–1032PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol J 13:1056–1070PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Kwon KC, Daniell H (2015) Low-cost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnol J 13:1017–1022PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Juarez P, Virdi V, Depicker A, Orzaez D (2016) Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications. Plant Biotechnol J 14:1791–1799PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Lau OS, Sun SS (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022PubMedCrossRefGoogle Scholar
  171. 171.
    Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Stoger E, Sack M, Fischer R, Christou P (2002) Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 13:161–166PubMedCrossRefGoogle Scholar
  173. 173.
    Sabalza M, Vamvaka E, Christou P, Capell T (2013) Seeds as a production system for molecular pharming applications: status and prospects. Curr Pharm Des 19:5543–5552PubMedCrossRefGoogle Scholar
  174. 174.
    Ramessar K, Capell T, Christou P (2008) Molecular pharming in cereal crops. Phytochem Rev 7:579–592CrossRefGoogle Scholar
  175. 175.
    Stoger E, Ma JK, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173PubMedCrossRefGoogle Scholar
  176. 176.
    Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201PubMedCrossRefGoogle Scholar
  177. 177.
    Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S, Robinson DG, Van Lerberge E, Terryn N, Van Montagu M, Liang M, Depicker A, De Jaeger G (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci U S A 104:1430–1435PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Sardana R, Dudani AK, Tackaberry E, Alli Z, Porter S, Rowlandson K, Ganz P, Altosaar I (2007) Biologically active human GM-CSF produced in the seeds of transgenic rice plants. Transgenic Res 16:713–721PubMedCrossRefGoogle Scholar
  179. 179.
    Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130PubMedCrossRefGoogle Scholar
  180. 180.
    Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643PubMedCrossRefGoogle Scholar
  181. 181.
    Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S, Ahmad A, Howard JA (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719PubMedCrossRefGoogle Scholar
  182. 182.
    Weichert N, Hauptmann V, Helmold C, Conrad U (2016) Seed-specific expression of spider silk protein multimers causes long-term stability. Front Plant Sci 7:6PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155PubMedCrossRefGoogle Scholar
  184. 184.
    Naqvi S, Ramessar K, Farre G, Sabalza M, Miralpeix B, Twyman RM, Capell T, Zhu C, Christou P (2011) High-value products from transgenic maize. Biotechnol Adv 29:40–53PubMedCrossRefGoogle Scholar
  185. 185.
    Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma J, Stoger E, Capell T, Christou P (2008) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci U S A 105:3727–3732PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K (2015) Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep 34:969–980PubMedCrossRefGoogle Scholar
  187. 187.
    Yang W, Zhang Y, Zhou X, Zhang W, Xu X, Chen R, Meng Q, Yuan J, Yang P, Yao B (2015) Production of a highly protease-resistant fungal alpha-galactosidase in transgenic maize seeds for simplified feed processing. PLoS One 10:e0129294PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Zhang D (2013) Plant seed-derived human transferrin: expression, characterization, and applications. Biotechnol 2:17Google Scholar
  189. 189.
    Magnusdottir A, Vidarsson H, Bjornsson JM, Orvar BL (2013) Barley grains for the production of endotoxin-free growth factors. Trends Biotechnol 31:572–580PubMedCrossRefGoogle Scholar
  190. 190.
    McLean MD, Chen R, Yu D, Mah KZ, Teat J, Wang H, Zaplachinski S, Boothe J, Hall JC (2012) Purification of the therapeutic antibody trastuzumab from genetically modified plants using safflower Protein A-oleosin oilbody technology. Transgenic Res 21:1291–1301PubMedCrossRefGoogle Scholar
  191. 191.
    Vargo KB, Parthasarathy R, Hammer DA (2012) Self-assembly of tunable protein suprastructures from recombinant oleosin. Proc Natl Acad Sci U S A 109:11657–11662PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Vitale A, Pedrazzini E (2005) Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor. Mol Interv 5:216–225PubMedCrossRefGoogle Scholar
  193. 193.
    Schillberg S, Twyman RM, Fischer R (2005) Opportunities for recombinant antigen and antibody expression in transgenic plants–technology assessment. Vaccine 23:1764–1769PubMedCrossRefGoogle Scholar
  194. 194.
    Fujiuchi N, Matoba N, Matsuda R (2016) Environment control to improve recombinant protein yields in plants based on agrobacterium-mediated transient gene expression. Front Bioeng Biotechnol 4:23PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33:1024–1042PubMedCrossRefGoogle Scholar
  196. 196.
    Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9:859–876PubMedCrossRefGoogle Scholar
  197. 197.
    Chen Q, Lai H (2015) Gene delivery into plant cells for recombinant protein production. BioMed Res Int. Article ID 932161Google Scholar
  198. 198.
    Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77:50521Google Scholar
  199. 199.
    Fischer R, Vaquero-Martin C, Sack M, Drossard J, Emans N, Commandeur U (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Biochem 30(Pt 2):113–116PubMedGoogle Scholar
  200. 200.
    Matoba N, Davis KR, Palmer KE (2011) Recombinant protein expression in Nicotiana. Methods Mol Biol 701:199–219PubMedCrossRefGoogle Scholar
  201. 201.
    Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci U S A 101:6852–6857PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141PubMedCrossRefGoogle Scholar
  203. 203.
    Huang C, Xie Y, Zhou X (2009) Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnol J 7:254–265PubMedCrossRefGoogle Scholar
  204. 204.
    Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection–a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048PubMedCrossRefGoogle Scholar
  205. 205.
    Chen Q, Davis KR (2016) The potential of plants as a system for the development and production of human biologics. F1000Res 19:5Google Scholar
  206. 206.
    Holtz BR, Berquist BR, Bennett LD, Kommineni VJ, Munigunti RK, White EL, Wilkerson DC, Wong KY, Ly LH, Marcel S (2015) Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnol J 13:1180–1190PubMedCrossRefGoogle Scholar
  207. 207.
    Olinger GG, Pettitt J, Kim D, Working C, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly M, Whaley KJ, Lear CM, Biggins JE, Scully C, Hensley L, Zeitlin L (2012) Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci U S A 109:18030–18035PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Qiu X, Audet J, Wong G, Fernando L, Bello A, Pillet S, Alimonti JB, Kobinger GP (2013) Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci Rep 3:3365PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Dicker M, Tschofen M, Maresch D, Konig J, Juarez P, Orzaez D, Altmann F, Steinkellner H, Strasser R (2016) Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants. Front Plant Sci 7:18PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Hernandez-Abanto S, Urban L, Landucci G, Fischer R, Jiang X (2013) Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One 8:e58724PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Redkiewicz P, Sirko A, Kamel KA, Gora-Sochacka A (2014) Plant expression systems for production of hemagglutinin as a vaccine against influenza virus. Acta Biochim Pol 61:551–560PubMedGoogle Scholar
  212. 212.
    D’Aoust MA, Lavoie PO, Couture MM, Trépanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vézina LP (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940PubMedCrossRefGoogle Scholar
  213. 213.
    Boes A, Reimann A, Twyman RM, Fischer R, Schillberg S, Spiegel H (2016) A plant-based transient expression system for the rapid production of malaria vaccine candidates. Methods Mol Biol 1404:597–619PubMedCrossRefGoogle Scholar
  214. 214.
    Spiegel H, Boes A, Voepel N, Beiss V, Edgue G, Rademacher T, Sack M, Schillberg S, Reimann A, Fischer R (2015) Application of a scalable plant transient gene expression platform for malaria vaccine development. Front Plant Sci 6:1169PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Gomez E, Lucero MS, Chimeno Zoth S, Carballeda JM, Gravisaco MJ, Berinstein A (2013) Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against infectious bursal disease virus. Vaccine 31:2623–2627PubMedCrossRefGoogle Scholar
  216. 216.
    Acosta W, Ayala J, Dolan M, Cramer C (2015) RTB Lectin: a novel receptor-independent delivery system for lysosomal enzyme replacement therapies. Sci Rep 5Google Scholar
  217. 217.
    Marsian J, Lomonossoff GP (2016) Molecular pharming – VLPs made in plants. Curr Opin Biotechnol 37:201–206PubMedCrossRefGoogle Scholar
  218. 218.
    Stoger E, Fischer R, Moloney M, Ma JK (2014) Plant molecular pharming for the treatment of chronic and infectious diseases. Annu Rev Plant Biol 65:743–768PubMedCrossRefGoogle Scholar
  219. 219.
    Paul MJ, Thangaraj H, Ma JK (2015) Commercialization of new biotechnology: a systematic review of 16 commercial case studies in a novel manufacturing sector. Plant Biotechnol J 13:1209–1220PubMedCrossRefGoogle Scholar
  220. 220.
    Kim D-S, Song I, Kim J, Kim D-S, Ko K (2016) Plant recycling for molecular biofarming to produce recombinant anti-cancer mab. Front Plant Sci 7Google Scholar
  221. 221.
    Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268PubMedCrossRefGoogle Scholar
  222. 222.
    Howard JA, Hood EE (2014) Commercial plant-produced recombinant protein products: case studies. Springer, HeidelbergCrossRefGoogle Scholar
  223. 223.
    Basaran P, Rodriguez-Cerezo E (2008) An assessment of emerging molecular farming activities based on patent analysis (2002 similar to 2006). Biotechnol Bioproc Eng 13:304–312CrossRefGoogle Scholar
  224. 224.
    Witcher DR, Hood EE, Peterson D, Bailey M, Bond D, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh R, Kappel W, Register JC, Howard JA (1998) Commercial production of β-glucuronidase (GUS): a model system for the production of proteins in plants. Mol Breed 4:301–312CrossRefGoogle Scholar
  225. 225.
    Hood EE, Devaiah SP, Fake G, Egelkrout E, Teoh KT, Requesens DV, Hayden C, Hood KR, Pappu KM, Carroll J, Howard JA (2011) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnol J 10:20–30PubMedCrossRefGoogle Scholar
  226. 226.
    Sticklen MB (2007) Production of ss-glucosidase, hemicellulase and ligninase in E1 and FLC-cellulase-transgenic plants. US Patent Application 20070192900Google Scholar
  227. 227.
    Hirai H, Kashima Y, Hayashi K, Sugiura T, Yamagishi K, Kawagishi H, Nishida T (2008) Efficient expression of laccase gene from white-rot fungus Schizophyllum commune in a transgenic tobacco plant. FEMS Microbiol Lett 286:130–135PubMedCrossRefGoogle Scholar
  228. 228.
    Waltz E (2011) Amylase corn sparks worries. Nat Biotechnol 29:294CrossRefGoogle Scholar
  229. 229.
    Thomas DR, Penney CA, Majumder A, Walmsley AM (2011) Evolution of plant-made pharmaceuticals. Int J Mol Sci 12:3220–3236PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Hefferon K (2010) Clinical trials fuel the promise of plant-derived vaccines. Am J Clin Med 7:30–37Google Scholar
  231. 231.
    Liew PS, Hair-Bejo M (2015) Farming of plant-based veterinary vaccines and their applications for disease prevention in animals. Adv Virol 2015:936940PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    MacDonald J, Doshi K, Dussault M, Hall JC, Holbrook L, Jones G, Kaldis A, Klima CL, Macdonald P, McAllister T, McLean MD, Potter A, Richman A, Shearer H, Yarosh O, Yoo HS, Topp E, Menassa R (2015) Bringing plant-based veterinary vaccines to market: managing regulatory and commercial hurdles. Biotechnol Adv 33:1572–1581PubMedCrossRefGoogle Scholar
  233. 233.
    Phan HT, Floss DM, Conrad U (2013) Veterinary vaccines from transgenic plants: highlights of two decades of research and a promising example. Curr Pharm Des 19:5601–5611PubMedCrossRefGoogle Scholar
  234. 234.
    Ling HY, Pelosi A, Walmsley AM (2010) Current status of plant-made vaccines for veterinary purposes. Expert Rev Vaccines 9:971–982PubMedCrossRefGoogle Scholar
  235. 235.
    Jones RM, Chichester JA, Manceva S, Gibbs SK, Musiychuk K, Shamloul M, Norikane J, Streatfield SJ, van de Vegte-Bolmer M, Roeffen W, Sauerwein RW, Yusibov V (2015) A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses. Hum Vaccin Immunother 11:124–132PubMedCrossRefGoogle Scholar
  236. 236.
    Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467PubMedCrossRefGoogle Scholar
  237. 237.
    Wang L, Coppel RL (2008) Oral vaccine delivery: can it protect against non-mucosal pathogens? Expert Rev Vaccines 7:729–738PubMedCrossRefGoogle Scholar
  238. 238.
    Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Munoz ET, Solorio-Meza SE, Amato D, Duran G, Giona F, Heitner R, Rosenbaum H, Giraldo P, Mehta A, Park G, Phillips M, Elstein D, Altarescu G, Szleifer M, Hashmueli S, Aviezer D (2011) Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 118:5767–5773PubMedCrossRefGoogle Scholar
  239. 239.
    Liu W, Burdick JA, van Osch GJ (2013) Plant-derived recombinant human collagen: a strategic approach for generating safe human ECM-based scaffold. Tissue Eng Part A 19:1489–1490PubMedCrossRefGoogle Scholar
  240. 240.
    Xu J, Shpak E, Gu T, Moo-Young M, Kieliszewski M (2005) Production of recombinant plant gum with tobacco cell culture in bioreactor and gum characterization. Biotechnol Bioeng 90:578–588PubMedCrossRefGoogle Scholar
  241. 241.
    Snell KD, Singh V, Brumbley SM (2015) Production of novel biopolymers in plants: recent technological advances and future prospects. Curr Opin Biotechnol 32:68–75PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jianfeng Xu
    • 1
  • Melissa Towler
    • 2
  • Pamela J. Weathers
    • 2
  1. 1.Arkansas Biosciences InstituteArkansas State UniversityJonesboroUSA
  2. 2.Biology and Biotechnology DepartmentWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations