Skip to main content

Grafting

  • Protocol
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 323))

Abstract

Grafting provides a simple way to generate chimeric plants with regions of different genotypes, and thus to assess the cell autonomy of gene action. The technique of grafting has been widely used in other species, but in Arabidopsis, its small size makes the process rather more complicated. However, there are now several well-established grafting procedures available, which we described here, and their use has already contributed greatly to understanding of such processes as shoot branching control, flowering, and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Booker, J. P., Chatfield, S. P., and Leyser, O. (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15, 495–507.

    Article  CAS  PubMed  Google Scholar 

  2. Furner, I. J., Ainscough, J. F. X., Pumfrey, J. A., and Petty, L. M. (1996) Clonal analysis of the late flowering fca mutant of Arabidopsis thaliana: cell fate and cell autonomy. Development 122, 1041–1050.

    CAS  PubMed  Google Scholar 

  3. Jenik, P. D. and Irish, V. F. (2000) Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development 126, 1267–1276.

    Google Scholar 

  4. Woodrick, R., Martin, P. R., Birman, I., and Pickett, F. B. (2000) Arabidopsis embryonic shoot fate map. Development 127, 813–820.

    CAS  PubMed  Google Scholar 

  5. Turnbull, C. G. N., Booker, J. P., and Leyser, H. M. O. (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 32, 255–262.

    Article  CAS  PubMed  Google Scholar 

  6. Rhee, S. Y. and Somerville, C. R. (1995) Flat-surface grafting in Arabidopsis thaliana. Plant Mol. Bol. Rep. 13, 118–123.

    Article  Google Scholar 

  7. Ayre, B. G. and Turgeon, R. (2004) Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol. 13, 2271–2278.

    Article  Google Scholar 

  8. Sorefan, K., Booker, J., Haurogné, K., et al. (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469–1474.

    Article  CAS  PubMed  Google Scholar 

  9. Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., and Leyser, O. (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  10. An, H.L., Roussot, C., Suárez-L—pez, P., et al. (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615–3626.

    Google Scholar 

  11. Van Norman, J. M., Frederick, R. L., and Sieburth, L. E. (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr. Biol. 14, 1739–1746.

    Article  PubMed  Google Scholar 

  12. Green, L. S. and Rogers, E. E. (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol. 136, 2523–2531.

    Article  CAS  PubMed  Google Scholar 

  13. Xia, Y. J., Suzuki, H., Borevitz, J., et al. (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23, 980–988.

    Article  CAS  PubMed  Google Scholar 

  14. Hawkes, V. and Turner, J. (2004) How are signalling pathways involving jasmonate and calcium linked to the wound response in Arabidopsis? 15th International Conference on Arabidopsis Research, Berlin. Abstract T008-002.

    Google Scholar 

  15. Wilson, A. K., Pickett, F. B., Turner, J. C., and Estelle, M. (1990) a dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol. Gen. Genet. 222, 377–383.

    Article  CAS  PubMed  Google Scholar 

  16. Gray, W. M., Ostin, A., Sandberg, G., Romano, C. P., and Estelle, M. (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 7197–7202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Bainbridge, K., Bennett, T., Turnbull, C., Leyser, O. (2006). Grafting. In: Salinas, J., Sanchez-Serrano, J.J. (eds) Arabidopsis Protocols. Methods in Molecular Biology™, vol 323. Humana Press. https://doi.org/10.1385/1-59745-003-0:39

Download citation

  • DOI: https://doi.org/10.1385/1-59745-003-0:39

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-395-4

  • Online ISBN: 978-1-59745-003-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics