Skip to main content

Knowledge-Based Virtual Screening: Application to the MDM4/p53 Protein–Protein Interaction

  • Protocol
  • First Online:
Chemogenomics

Summary

Chemogenomics knowledge-based drug discovery approaches aim to extract the knowledge gained from one target and to apply it for the discovery of ligands and hopefully drugs of a new target which is related to the parent target by homology or conserved molecular recognition. Herein, we demonstrate the potential of knowledge-based virtual screening by applying it to the MDM4-p53 protein–protein interaction where the MDM2-p53 protein–protein interaction constitutes the parent reference system; both systems are potentially relevant to cancer therapy. We show that a combination of virtual screening methods, including homology based similarity searching, QSAR (Quantitative Structure–Activity Relationship) methods, HTD (High Throughput Docking), and UNITY pharmacophore searching provide a successful approach to the discovery of inhibitors. The virtual screening hit list is of the magnitude of 50,000 compounds picked from the corporate compound library of ∼1.2 million compounds. Emphasis is placed on the facts that such campaigns are only feasible because of the now existing HTCP (Highthroughput Cherry-Picking) automation systems in combination with robust MTS (Medium Throughput Screening) fluorescence-based assays. Given that the MDM2-p53 system constitutes the reference system, it is not surprising that significantly more and stronger hits are found for this interaction compared to the MDM4-p53 system. Novel, selective and dual hits are discovered for both systems. A hit rate analysis will be provided compared to the full HTS (High-throughput Screening).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caron, P.R., Mullican, M.D., Mashal, R.D., Wilson, K.P., Su, M.S., and Murcko, M.A. (2001) Chemogenomic approaches to drug discovery. Curr. Opin. Chem. Biol. 5, 464–470.

    Article  PubMed  CAS  Google Scholar 

  2. Mestres, J. (2004) Computational chemogenomics approaches to systematic knowledge-based drug discovery. Curr. Opin. Drug Discov. Devel. 7, 304–314.

    PubMed  CAS  Google Scholar 

  3. Kubini, H., and Müller, G. (eds.) (2004) Chemogenomics in Drug Discovery – A Medicinal Chemistry Perspective. Wiley-VCH, Weinheim.

    Google Scholar 

  4. Jacoby, E. (2006) Chemogenomics: drug discovery’s panacea? Mol. Biosyst. 2, 218–220.

    Article  PubMed  CAS  Google Scholar 

  5. Jacoby, E. (ed.) (2006) Chemogenomics – Knowledge-Based Approaches to Drug Discovery. Imperial College Press, London.

    Google Scholar 

  6. Rognan, D. (2007) Chemogenomic app­roaches to rational drug design. Br. J. Pharmacol. 152, 38–52.

    Article  PubMed  CAS  Google Scholar 

  7. Klabunde, T. (2007) Chemogenomic app-roaches to drug discovery: similar receptors bind similar ligands. Br. J. Pharmacol. 152, 5–7.

    Article  PubMed  CAS  Google Scholar 

  8. Savchuck, N.P., Balakin, K.V., and Tkachenko, S.E. (2004) Exploring the chemogenomic knowledge space with annotated chemical libraries. Curr. Opin. Chem. Biol. 8, 412–417.

    Article  Google Scholar 

  9. Vieth, M., Higgs, R.E., Robertson, D.H., Shapiro, M., Gragg, E.A., and Hemmerle, H. (2004) Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta. 1697, 243–257.

    Article  PubMed  CAS  Google Scholar 

  10. ter Haar, E., Walters, W.P., Pazhanisamy, S., Taslimi, P., Pierce, A.C., Bemis, G.W., Salituro, F.G., and Harbeson, S.L. (2004) Kinase chemogenomics: targeting the human kinome for target validation and drug discovery. Mini. Rev. Med. Chem. 4, 235–253.

    Article  PubMed  CAS  Google Scholar 

  11. Savchuk, N.P., Tkachenko, S.E., and Balakin, K.V. (2006) Strategies for the design of pGPCR-targeted libraries. In: Rognan, D. (ed.) Ligand Design for G protein-coupled receptors. Wiley-VCH, Weinheim, pp. 137–164.

    Chapter  Google Scholar 

  12. Jacoby, E., Bouhelal, R., Gerspacher, M., and Seuwen, K. (2006) The 7 TM G-protein-coupled receptor target family. ChemMedChem. 1, 760–782.

    Article  CAS  Google Scholar 

  13. Koch, M.A., Breinbauer, R., and Waldmann, H. (2003) Protein structure similarity as guiding principle for combinatorial library design. Biol. Chem. 384, 1265–1272.

    Article  PubMed  CAS  Google Scholar 

  14. Bajorath, J. (2002) Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882–894.

    Article  PubMed  CAS  Google Scholar 

  15. Bleicher, K.H., Böhm, H.J., Müller, K., and Alanine, A.I. (2003) Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 5, 369–378.

    Article  Google Scholar 

  16. Jacoby, E., Schuffenhauer, A., Popov, M., Azzaoui, K., Havill, B., Schopfer, U., Engeloch, C., Stanek, J., Acklin, P., Rigollier, P., Stoll, F., Koch, G., Meier, P., Orain, D., Giger, R., Hinrichs, J., Malagu, K., Zimmermann, J., and Roth, H.J. (2005) Key aspects of the Novartis compound collection enhancement project for the compilation of a comprehensive chemogenomics drug discovery screening collection. Curr. Top. Med. Chem. 5, 397–411.

    Article  PubMed  CAS  Google Scholar 

  17. Jacoby, E., Schuffenhauer, A., Azzaoui, K., Popov, M., Dressler, S., Glick, M., Jenkins, J., Davies, J., and Roggo, S. (2006) Small molecules for chemogenomics-based drug discovery. In: Jacoby, E. (ed.) Chemogenomics – Knowledge-Based Approaches to Drug Discovery. Imperial College Press, London, pp. 1–38.

    Chapter  Google Scholar 

  18. Toledo, F. and Wahl, G.M. (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6, 909–923.

    Article  PubMed  CAS  Google Scholar 

  19. Toledo, F. and Wahl, G.M. (2007) MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell. Biol. 39, 1476–1482.

    Article  PubMed  CAS  Google Scholar 

  20. Hu, B., Gilkes, D.M., and Chen, J. (2007) Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res. 67, 8810–8817.

    Article  PubMed  CAS  Google Scholar 

  21. Olah, M., Mracec, M., Ostopovici, L., Rad, R., Bora, A., Hadaruga, N., Olah, I., Banda, M., Simon, Z., Mracec, M., and Oprea, T.I. (2005) WOMBAT: World of molecular bioactivity. In: T.I. Oprea (ed.) Cheminformatics in Drug Discovery. Wiley-VCH, Weinheim, pp. 233–240.

    Google Scholar 

  22. http://www.prous.com

  23. http://www.mdl.com

  24. Ekins, S., Mestres, J., and Testa, B. (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br. J. Pharmacol. 152, 9–20.

    Article  PubMed  CAS  Google Scholar 

  25. Ekins, S., Mestres, J., and Testa, B. (2007) In silico pharmacology for drug discovery: applications to targets and beyond. Br. J. Pharmacol. 152, 21–37.

    Article  PubMed  CAS  Google Scholar 

  26. Schuffenhauer, A., Floersheim, P., Acklin, P., and Jacoby, E. (2003) Similarity metrics for ligands reflecting the similarity of the target proteins. J. Chem. Inf. Comput. Sci. 43, 391–405.

    Article  PubMed  CAS  Google Scholar 

  27. Popowicz, G.M., Czarna, A., Rothweiler, U., Szwagierczak, A., Krajewski, M., Weber, L., and Holak, T.A. (2007) Molecular basis for the inhibition of p53 by Mdmx. Cell Cycle 6, 2386–2392.

    Article  PubMed  CAS  Google Scholar 

  28. Dudkina, A.S. and Lindsley, C.W. (2007) Small molecule protein-protein inhibitors for the p53-MDM2 interaction. Curr. Top. Med. Chem. 7, 952–960.

    Article  PubMed  CAS  Google Scholar 

  29. Vassilev, L.T. (2007) MDM2 inhibitors for cancer therapy. Trends Mol. Med. 13, 23–31.

    Article  PubMed  CAS  Google Scholar 

  30. Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A., and Pavletich, N.P. (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953.

    Article  PubMed  CAS  Google Scholar 

  31. Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., and Liu, E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. (2004) Science 303, 844–848.

    Article  PubMed  CAS  Google Scholar 

  32. Ding, K., Lu, Y., Nikolovska-Coleska, Z., Wang, G., Qiu, S., Shangary, S., Gao, W., Qin, D., Stuckey, J., Krajewski, K., Roller, P.P., and Wang, S. (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J. Med. Chem. 49, 3432–3435.

    Article  PubMed  CAS  Google Scholar 

  33. Grasberger, B.L., Lu, T., Schubert, C., Parks, D.J., Carver, T.E., Koblish, H.K., Cummings, M.D., LaFrance, L.V., Milkie­wicz, K.L., Calvo, R.R., Maguire, D., Lattanze, J., Franks, C.F., Zhao, S., Rama­chandren, K., Bylebyl, G.R., Zhang, M., Manthey, C.L., Petrella, E.C., Pantoliano, M.W., Deckman, I.C., Spurlino, J.C., Maro­ney, A.C., Tomczuk, B.E., Molloy, C.J., and Bone, R.F. (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J. Med. Chem. 48, 909–912.

    Article  PubMed  CAS  Google Scholar 

  34. Sakurai, K., Schubert, C., and Kahne, D. (2006) Crystallographic analysis of an 8-mer p53 peptide analogue complexed with MDM2. J. Am. Chem. Soc. 128, 11000–11001.

    Article  PubMed  CAS  Google Scholar 

  35. Fasan, R., Dias, R.L.A., Moehle, K., Zerbe, O., Obrecht, D., Mittl, P.R.E., Grutter, M.G., and Robinson, J.A. (2006) Structure–activity studies in a family of β-hairpin protein epitope mimetic inhibitors of the p53-HDM2 protein–protein interaction. ChemBioChem. 7, 515–526.

    Article  PubMed  CAS  Google Scholar 

  36. chon, O., Friedler, A., Freund, S., and Fersht, A.R.(2004) Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. J. Mol. Biol. 336, 197–202.

    Article  Google Scholar 

  37. Fry, D.C., Emerson, S.D., Palme, S., Vu, B.T., Liu, C.M., and Podlaski, F. (2004) NMR structure of a complex between MDM2 and a small molecule inhibitor. J. Biomol. NMR. 30, 163–173

    Article  PubMed  CAS  Google Scholar 

  38. Uhrinova, S., Uhrin, D., Powers, H., Watt, K., Zheleva, D., Fischer, P., McInnes, C., and Barlow, P.N. (2005) Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. J Mol. Biol. 350, 587–598.

    Article  PubMed  CAS  Google Scholar 

  39. Chene, P. (2006) Drugs targeting protein-protein interactions. ChemMedChem. 1, 400–411.

    Article  PubMed  CAS  Google Scholar 

  40. Garcia-Echeverria, C., Chene, P., Blommers, M.J.J., and Furet, P. (2000) Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J. Med. Chem. 43, 3205–3208.

    Article  PubMed  CAS  Google Scholar 

  41. Espinoza-Fonseca, L.M. and Trujillo-Ferrara, J.G. (2006) Conformational changes of the p53-binding cleft of MDM2 revealed by molecular dynamics simulations. Biopolymers 83, 365–373.

    Article  PubMed  CAS  Google Scholar 

  42. Böttger, V., Böttger, A., Garcia-Echeverria, C., Ramos, Y.F., van der Eb, A.J., Jochemsen, A.G., and Lane, D.P. (1999) Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18, 189–199.

    Article  PubMed  Google Scholar 

  43. http://www.schrainger.com

  44. http://www. scitegic.com

  45. Hert, J., Willett, P., Wilton, D., Acklin, P., Azzaoui, K., Jacoby, E., and Schuffenhauer, A. (2004) Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J. Chem. Inf. Comput. Sci. 44, 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  46. Xia, X., Maliski, E.G., Gallant, P., and Rogers, D. (2004) Classification of kinase inhibitors using a Bayesian model. J. Med. Chem. 47, 4463–4470.

    Article  PubMed  CAS  Google Scholar 

  47. Jenkins, J.L., Glick, M., and Davies, J.W. (2004) A 3D similarity method for scaffold hopping from known drugs or natural ligands to new chemotypes. J. Med. Chem. 47, 6144–6159.

    Article  PubMed  CAS  Google Scholar 

  48. Brown, N. and Jacoby, E. (2006) On scaffolds and hopping in medicinal chemistry. Mini Rev. Med. Chem. 6, 1217–1229.

    Article  PubMed  CAS  Google Scholar 

  49. Brown, N., et al. (2009) Manuscript in preparation.

    Google Scholar 

  50. Dubois, J.-É. (1976) Ordered chromatic graphs and limited environment concepts. In: Balaban, A. T. (ed.) Chemical Applications of Graph Theory. Academic Press, London, pp. 335–370.

    Google Scholar 

  51. Bremser, W. (1978) HOSE – A Novel Substructure Code. Anal. Chim. Acta 103, 355–365.

    Article  CAS  Google Scholar 

  52. Rogers, D., Brown, R.D., and Hahn, M. (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen. 10, 682–686.

    Article  PubMed  CAS  Google Scholar 

  53. http://www.umetrics.com.

  54. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., and Shenkin, P.S. (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749.

    Article  PubMed  CAS  Google Scholar 

  55. Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., and Banks, J.L. (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759.

    Article  PubMed  CAS  Google Scholar 

  56. Ferrara, P. and Jacoby, E. (2007) Evaluation of the utility of homology models in high throughput docking. J. Mol. Model. 13, 897–905.

    Article  PubMed  CAS  Google Scholar 

  57. Martin, Y.C. (1992) 3D database searching in drug design. J. Med. Chem. 35, 2145–2154.

    Article  PubMed  CAS  Google Scholar 

  58. Hurst, T. (1994) Flexible 3D searching: the directed tweak technique. J. Chem. Inf. Comput. Sci. 34, 190–196.

    Article  CAS  Google Scholar 

  59. Boettcher, A., et al. (2009) Manuscript in preparation.

    Google Scholar 

  60. Sheridan, R.P. and Kearsley, S.K. (2002) Why do we need so many chemical similarity search methods? Drug Discov. Today. 7, 903–911.

    Article  PubMed  Google Scholar 

  61. Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch, M.A., and Waldmann, H. (2007) The scaffold tree – visualization of the scaffold universe by hierarchical scaffold classification. J. Chem. Inf. Model. 47, 47–58.

    Article  PubMed  CAS  Google Scholar 

  62. Dawson, R., Müller, L., Dehner, A., Klein, C., Kessler, H., and Buchner, J. (2003) The N-terminal domain of p53 is natively unfolded. J. Mol. Biol. 332, 1131–1141.

    Article  PubMed  CAS  Google Scholar 

  63. Jacoby, E., Schuffenhauer, A., and Acklin, P. (2004) The contribution of molecular informatics to chemogenomics. Knowledge–based discovery of biological targets and chemical lead compounds. In: Kubini, H. and Müller, G. (eds.) Chemogenomics in Drug Discovery – A Medicinal Chemistry Perspective. Wiley-VCH, Weinheim, pp. 139–166.

    Google Scholar 

Download references

Acknowledgments

Drs. P. Chene and P. Fuerst (all NIBR associates) are acknowledged for various support and discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jacoby, E. et al. (2009). Knowledge-Based Virtual Screening: Application to the MDM4/p53 Protein–Protein Interaction. In: Jacoby, E. (eds) Chemogenomics. Methods in Molecular Biology, vol 575. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-274-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-274-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-273-5

  • Online ISBN: 978-1-60761-274-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics