Skip to main content

Advertisement

Log in

Evaluation of the utility of homology models in high throughput docking

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

High throughput docking (HTD) is routinely used for in silico screening of compound libraries with the aim to find novel leads in a drug discovery program. In the absence of an experimentally determined structure, a homology model can be used instead. Here we present an assessment of the utility of homology models in HTD by docking 300,000 anticipated inactive compounds along with 642 known actives into the binding site of the insulin-like growth factor 1 receptor (IGF-1R) kinase constructed by homology modeling. Twenty-one different templates were selected and the enrichment curves obtained by the homology models were compared to those obtained by three IGF-1R crystal structures. The results show a wide range of enrichments from random to as good as two of the three IGF-1R crystal structures. Nevertheless, if we consider the enrichment obtained at 2% of the database screened as a performance criterion, the best crystal structure outperforms the best homology model. Surprisingly, the sequence identity of the template to the target is not a good descriptor to predict the enrichment obtained by a homology model. The three homology models that yield the worst enrichment have the smallest binding-site volume. Based on our results, we propose ensemble docking to perform HTD with homology models.

Top-scoring binding mode of NVP-AEW541 found by Glide with the aew receptor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jacobson MP, Sali A (2004) Ann Reports Med Chem 39:259–276

    Article  CAS  Google Scholar 

  2. Hillisch A, Pineda LP, Hilgenfeld R (2004) Drug Discovery Today 9:659–669

    Article  CAS  Google Scholar 

  3. Bissantz C, Bernard P, Hilbert M, Rognan D (2003) Proteins 50:5–25

    Article  CAS  Google Scholar 

  4. Varady J, Wu X, Fang X, Min J, Hu Z, Levant B, Wang S (2003) J Med Chem 46:4377–4392

    Article  CAS  Google Scholar 

  5. Evers A, Klabunde T (2005) J Med Chem 48:1088–1097

    Article  CAS  Google Scholar 

  6. Salo OMH, Raitio KH, Savinainen JR, Nevalainen T, Lahtela-Kakkonen M, Laitinen JT, Järvinen T, Poso A (2005) J Med Chem 48:7166–7171

    Article  CAS  Google Scholar 

  7. Vangrevelinghe E, Zimmermann K, Schoepfer J, Portmann R, Fabbro D, Furet P (2003) J Med Chem 46:2656–2662

    Article  CAS  Google Scholar 

  8. McGovern SL, Shoichet BK (2003) J Med Chem 46:2895–2907

    Article  CAS  Google Scholar 

  9. Diller DJ, Li R (2003) J Med Chem 46:4638–4647

    Article  CAS  Google Scholar 

  10. Oshiro C, Bradley EK, Eksterowicz J, Evensen E, Lamb ML, Lanctot K, Putta S, Stanton R, Grootenhuis PDJ (2004) J Med Chem 47:764–767

    Article  CAS  Google Scholar 

  11. Kairys V, Fernandes MX, Gilson MK (2006) J Chem Inf Model 46:365–379

    Article  CAS  Google Scholar 

  12. Kenyon V, Chorny I, Carvajal WI, Holman TR, Jacobson MP (2006) J Med Chem 49:1356–1363

    Article  CAS  Google Scholar 

  13. Blume-Jensen P, Hunter T (2001) Nature 411:355–365

    Article  CAS  Google Scholar 

  14. Wagman AS, Nuss JM (2001) Curr Pharm Des 7:417–450

    Article  CAS  Google Scholar 

  15. Adcock IM, Chung KF, Caramori G, Ito K (2006) Eur J Pharmacol 533:118–132

    Article  CAS  Google Scholar 

  16. Verdonk ML, Berdini V, Hartshorn MJ, Mooij WTM, Murray CW, Taylor RD, Watson P (2004) J Chem Inf Comput Sci 44:793–806

    Article  CAS  Google Scholar 

  17. Muegge I, Enyedy IJ (2004) Curr Med Chem 11:693–707

    Article  CAS  Google Scholar 

  18. Chuaqui C, Deng Z, Singh J (2005) J Med Chem 48:121–133

    Article  CAS  Google Scholar 

  19. Sims PA, Wong CF, McCammon JA (2003) J Med Chem:46:3314–3325

    Article  CAS  Google Scholar 

  20. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) Science 298:1912–1934

    Article  CAS  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Research 28:235–242

    Article  CAS  Google Scholar 

  22. Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H (2004) Biochim Biophys Acta 1697:243–257

    CAS  Google Scholar 

  23. Glide, version 4.0, Schrödinger, LLC, New York, NY, 2005

  24. Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J, Gao JP, Brueggen J, Capraro HG, Cozens R, Evans DB, Fabbro D, Furet P, Porta DG, Liebetanz J, Martiny-Baron G, Ruetz S, Hofmann F (2004) Cancer Cell 5:231–239

    Article  CAS  Google Scholar 

  25. Prime, version 1.5, Schrödinger, LLC, New York, NY, 2005

  26. Maestro, version 7.5, Schrödinger, LLC, New York, NY, 2006

  27. Sadowski J, Rudolph C, Gasteiger J (1990) Tetrahedron Comp Method 3:537–547

    Article  Google Scholar 

  28. LigPrep, version 2.0, Schrödinger, LLC, New York, NY, 2005

  29. Pipeline Pilot 5.0; Scitegic, Inc.

  30. Witten IH, Frank E (1999) Data mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann Publishers, New York

    Google Scholar 

  31. Thomas MP, McInnes C, Fischer PM (2006) J Med Chem 49:92–104

    Article  CAS  Google Scholar 

  32. Kleywegt GJ, Jones TA (1994) Acta Cryst D50:178–185

    CAS  Google Scholar 

  33. Ferrari AM, Wei BQ, Constantino L, Shoichet BK (2004) J Med Chem 47:5076–5084

    Article  CAS  Google Scholar 

  34. Cavasotto CN, Abagyan RA (2004) J Mol Biol 337:209–225

    Article  CAS  Google Scholar 

  35. Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) J Med Chem 42:5100–5109

    Article  CAS  Google Scholar 

  36. Barril X, Morley SD (2005) J Med Chem 48:4432–4443

    Article  CAS  Google Scholar 

  37. MacroModel XCluster, version 9.1, Schrödinger, LLC, New York, NY, 2005

  38. Evers A, Gohlke H, Klebe G (2003) J Mol Biol 334:327–345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Nathan Brown for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Jacoby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrara, P., Jacoby, E. Evaluation of the utility of homology models in high throughput docking. J Mol Model 13, 897–905 (2007). https://doi.org/10.1007/s00894-007-0207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0207-6

Keywords

Navigation