Advertisement

Genome Variation: A Review of Web Resources

  • Andrew Collins
  • William J. Tapper
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 713)

Abstract

An enormous number of high-quality Web-based resources are now available to facilitate research into genome variation. Although identification of the most appropriate and informative resources can be challenging, a number of key sites provide links to more specialized resources that may be useful to follow up. Given ongoing research, focussing on the sequencing of many different genomes, we can expect sequence databases and their associated polymorphism-based resources to greatly increase in depth and complexity in a relatively short period of time. However, databases and tools developed to date, and described here, provide a sound basis for accommodating this next generation of genomic data. As well as sequence-oriented resources this review presents databases providing genotypic and common disease phenotype data, copy number variation, genetic maps, cytogenetic data, and gives an overview of key software tools, with the emphasis on analysis of the genetic basis of common disease.

Key words

Genome sequence Single nucleotide polymorphism Copy-number variation Linkage maps Linkage disequilibrium Common diseases 

References

  1. 1.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921.PubMedCrossRefGoogle Scholar
  2. 2.
    The International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861.CrossRefGoogle Scholar
  3. 3.
    Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78(4):629–644.PubMedCrossRefGoogle Scholar
  4. 4.
    Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237.PubMedCrossRefGoogle Scholar
  5. 5.
    Thomas DJ, Trumbower H, Kern AD, Rhead BL, Kuhn RM et al (2007) Variation resources at UC Santa Cruz. Nucleic Acids Res 35:D716–D720.PubMedCrossRefGoogle Scholar
  6. 6.
    The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816.CrossRefGoogle Scholar
  7. 7.
    Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM et al (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727–732.PubMedCrossRefGoogle Scholar
  8. 8.
    Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N et al (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453:56–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Matise TC, Chen F, Chen W, De La Vega F, Hansen M et al (2007) A second-generation combined linkage physical map of the human genome. Genome Res 17:1783–1786.PubMedCrossRefGoogle Scholar
  10. 10.
    Dausset J, Cann H, Cohen D, Lathrop M, Lalouel JM et al (1990). Centre d’Etude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics 6(3):575–577.PubMedCrossRefGoogle Scholar
  11. 11.
    Tapper W, Gibson J, Morton NE, Collins A (2008) A comparison of methods to detect recombination hotspots. Hum Hered 66(3):157–169.PubMedCrossRefGoogle Scholar
  12. 12.
    Maniatis N, Collins A, Xu CF, McCarthy LC, Hewett DR et al (2002) The first linkage disequilibrium (LD) maps: delineation of hot and cold blocks by diplotype analysis. Proc Natl Acad Sci USA 99:2228–2233.PubMedCrossRefGoogle Scholar
  13. 13.
    Service S, DeYoung J, Karayiogou M, Roos JL, Pretorious H et al (2006). Magnitude and distribution of linkage disequilibrium in ­population isolates and implications for genome-wide association studies. Nat Genet 38(5):556–560.PubMedCrossRefGoogle Scholar
  14. 14.
    Collins A, Lau W (2008) CHROMSCAN: genome-wide association using a linkage disequilibrium map. J Hum Genet 53(2):121–126.PubMedCrossRefGoogle Scholar
  15. 15.
    Barber JCK (2005). Directly transmitted unbalanced chromosome abnormalities and euchromatic variants. J Med Genet 42(8):609–629.PubMedCrossRefGoogle Scholar
  16. 16.
    Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678.CrossRefGoogle Scholar
  17. 17.
    Easton DF, Pooley KA, Dunning AM, Pharoah PDP, Thompson D et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093.PubMedCrossRefGoogle Scholar
  18. 18.
    Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19(1):149–150.PubMedCrossRefGoogle Scholar
  19. 19.
    Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213.PubMedCrossRefGoogle Scholar
  20. 20.
    Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169.PubMedCrossRefGoogle Scholar
  21. 21.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81(3):559–575.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Andrew Collins
    • 1
  • William J. Tapper
    • 1
  1. 1.Human Genetics Research DivisionUniversity of SouthamptonSouthamptonUK

Personalised recommendations