Skip to main content

Oocyte Expression With Injection of Purified T7 RNA Polymerase

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

The Xenopus oocyte is a widely used system for protein expression. Investigators have had the choice between two different techniques: injection into the cytoplasm of in vitro transcribed complementary RNA (cRNA) or injection into the nucleus of complementary DNA (cDNA). We report on a third expression technique that is based on the combined injection of cDNA and purified T7 RNA polymerase directly into the cytoplasm of oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317–387.

    Article  CAS  PubMed  Google Scholar 

  2. Schmitt, B. M., and Koepsell, H. (2002) An improved method for real-time monitoring of membrane capacitance in Xenopus laevis oocytes. Biophys. J. 82, 1345–1357.

    Article  CAS  PubMed  Google Scholar 

  3. Scheuner, D., Logsdon, C. D., and Holz, R. W. (1992) Bovine chromaffin granule membranes undergo Ca2+-regulated exocytosis in frog oocytes. J. Cell Biol. 116, 359–365.

    Article  CAS  PubMed  Google Scholar 

  4. Jaunin, P., Horisberger, J. D., Richter, K., Good, P. J., Rossier, B.C., and Geering, K. (1992) Processing, intracellular transport, and functional expression of endogenous and exogenous α-β 3 Na,K-ATPase complexes in Xenopus oocytes. J. Biol. Chem. 267, 577–585.

    CAS  PubMed  Google Scholar 

  5. Buller, A. L. and White, M. M. (1992) Ligand-binding assays in Xenopus oocytes. Methods Enzymol. 207, 368–375.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, C. L., Linton, J., Soughayer, J. S., Sims, C. E., and Allbritton, N. L. (1999) Localized measurement of kinase activation in oocytes of Xenopus laevis. Nature Biotech. 17, 759–762.

    Article  CAS  Google Scholar 

  7. Zagotta, W. N., Hoshi, T., and Aldrich, R. W. (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571.

    Article  CAS  PubMed  Google Scholar 

  8. Geib, S., Sandoz, G., Mabrouk, K., et al. (1992) Use of a purified and functional recombinant calcium-channel µ4 subunit in surface-plasmon resonance studies. Biochem. J. 364,285–292.

    Google Scholar 

  9. Miledi, R., Duenas, Z., Martinez-Torres, A., Kawas, C. H., and Eusebi, F. (2004) Microtransplantation of functional receptors and channels from the Alzheimer’s brain to frog oocytes. Proc. Natl. Acad. Sci. USA 101, 1760–1763.

    Article  CAS  PubMed  Google Scholar 

  10. Marsal, J., Tigyi, G., and Miledi, R. (1995) Incorporation of acetylcholine receptors and Cl channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc. Natl. Acad. Sci. U. S. A. 92, 5224–5228.

    Article  CAS  PubMed  Google Scholar 

  11. Wall, D. A. and Patel, S. (1989) Isolation of plasma membrane complexes from Xenopus oocytes. J. Membr. Biol. 107, 189–201.

    Article  CAS  PubMed  Google Scholar 

  12. Kamsteeg, E. J. and Deen, P. M. T. (2001) Detection of aquaporin-2 in the plasma membranes of oocytes: a novel isolation method with improved yield and purity. Biochem. Biophys. Res. Comm. 282, 683–690.

    Article  CAS  PubMed  Google Scholar 

  13. Schillers, H., Danker, T., Schnittler, H. J., Lang, F., and Oberleithner, H. (2000) Plasma membrane plasticity of Xenopus laevis oocyte imaged with atomic force microscopy. Cell. Physiol. Biochem. 10, 99–107.

    Article  CAS  PubMed  Google Scholar 

  14. Perez, G., Lagrutta, A., Adelman, J. P., and Toro, L. (1994) Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers. Biophys. J. 66, 1022–1027.

    Article  CAS  PubMed  Google Scholar 

  15. Paine, P. L., Johnson, M. E., Lau, Y. T., Tluczek, L. J., and Miller, D. S. (1992) The oocyte nucleus isolated in oil retains in vivo structure and functions. Biotechniques 13, 238–246.

    CAS  PubMed  Google Scholar 

  16. Lehman, C. W. and Carroll, D. (1993) Isolation of large quantities of functional, cytoplasm-free Xenopus laevis oocyte nuclei. Anal. Biochem. 211, 311–319.

    Article  CAS  PubMed  Google Scholar 

  17. Ford, C. C. and Gurdon, J. B. (1977) A method for enucleating oocytes of Xenopus laevis. J. Embryol. Exp. Morphol. 37, 203–209.

    CAS  PubMed  Google Scholar 

  18. Stefani, E. and Bezanilla, F. (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol. 293, 300–318.

    Article  CAS  PubMed  Google Scholar 

  19. Cucu, D., Simaels, J., Jans, D., and Van Driessche, W. (2004) The transoocyte voltage clamp: a noninvasive technique for electrophysiological experiments with Xenopus laevis oocytes. Pflügers Arch. 447, 934–942.

    Article  CAS  PubMed  Google Scholar 

  20. Choe, H. and Sackin, H. (1997) Improved preparation of Xenopus oocytes for patch-clamp recordings. Pflügers Arch. 433, 648–652.

    Article  CAS  PubMed  Google Scholar 

  21. Hering, S. (1998) Small-volume and rapid extracellular solution exchange around Xenopus oocytes during voltage-clamp recordings. Pflügers Arch. 436, 303–307.

    Article  CAS  PubMed  Google Scholar 

  22. Dascal, N., Chilcott, G., and Lester, H. A. (1991) Recording of voltage and Ca2+-dependent currents in Xenopus oocytes using an intracellular perfusion method. J. Neurosci. Methods 39, 29–38.

    Article  CAS  PubMed  Google Scholar 

  23. Nowak, M. W., Gallivan, J. P., Silverman, S. K., Labarca, C. G., Dougherty, D. A., and Lester, H. A. (1998) In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol. 293, 504–529.

    Article  CAS  PubMed  Google Scholar 

  24. Freeh, G. C. and Joho, R. H. (1992) Isolation of ion channel genes by expression cloning in Xenopus oocytes. Methods Enzymol. 207, 592–604.

    Article  Google Scholar 

  25. Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177–182.

    Article  CAS  PubMed  Google Scholar 

  26. Swick, A. G., Janicot, M., Cheneval-Kastelic, T., McLenithan, J. C, and Lane, D. (1992) Promoter-cDNA-directed heterologous protein expression in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. U. S. A. 89, 1812–1816.

    Article  CAS  PubMed  Google Scholar 

  27. Krieg, P. A. and Melton, D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070.

    Article  CAS  PubMed  Google Scholar 

  28. Geib, S., Sandoz, G., Carlier, E., Cornet, V., Cheynet-Sauvion, V., and De Waard, M. (2001) A novel Xenopus oocyte expression system based on cytoplasmic coinjection of T7-driven plasmids and purified T7-RNA polymerase. Receptors Channels 7, 331–343.

    CAS  PubMed  Google Scholar 

  29. Arnaud, N., Cheynet, V., Oriol, G., Mandrand, B., and Mallet, F. (1997) Construction and expression of a modular gene encoding bacteriophage T7 RNA polymerase. Gene 199, 149–156.

    Article  CAS  PubMed  Google Scholar 

  30. Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292.

    Article  CAS  PubMed  Google Scholar 

  31. Drummond, D. R., Armstrong, J., and Colman, A. (1985) The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nut: Acids Res. 13, 7375–7394.

    Article  CAS  Google Scholar 

  32. Lehrach, H., Diamond, D., Wozney, J. M., and Boedtker, H. (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16, 4743–4751.

    Article  CAS  PubMed  Google Scholar 

  33. De Waard, M. and Campbell, K. P. (1995) Subunit regulation of the neuronal α1A Ca2+ channel expressed in Xenopus oocytes. J. Physiol. 485, 619–634.

    PubMed  Google Scholar 

  34. Eppig, J. J. and Dumont, J. N. (1976) Defined nutrient medium for the in vitro maintenance of Xenopus laevis oocytes. In Vitro 12, 418–427.

    Article  CAS  PubMed  Google Scholar 

  35. Wyllie, A. H., Laskey, R. A., Finch, J., and Gurdon, J. B. (1978) Selective DNA conservation and chromatin assembly after injection of SV40 DNA into Xenopus oocytes. Dev. Biol. 64, 178–188.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Altafaj, X., Joux, N., Ronjat, M., De Waard, M. (2006). Oocyte Expression With Injection of Purified T7 RNA Polymerase. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics