Skip to main content
Log in

Isolation of plasma membrane complexes fromXenopus oocytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A method for the isolation of plasma membrane fractions fromXenopus oocytes has been developed, and the membranes have been characterized biochemically and morphologically. Plasma membrane complexes prepared by this procedure consisted of large sheets of the membrane, with associated vitelline envelope (a nonmembranous meshwork of fibers) and cortical (secretory) granules still attached. The morphology of cell surface microvilli and coated pits was well preserved. Cortical granules were removed by gentle homogenization in a low ionic strength medium, and integral and peripheral membrane proteins were then separated from vitelline envelopes by detergent extraction and phase separation in Triton-X-114. Biochemical characterization of the plasma membrane fractions indicated substantial levels of 5′-nucleotidase and alkaline phosphodiesterase activity associated with the oocyte cell surface, with 44–66% recovery of these markers in the final membrane preparations. Lectin blotting and lectin affinity chromatography with Concanavalin A and wheat germ agglutinin were used to characterize the major glycoprotein species associated with the plasma membrane complexes. Plasma membrane fractions prepared by this procedure should be very useful in both biochemical and morphological studies of membrane protein sorting in theXenopus oocyte system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avruch, J., Wallach, D.F.H. 1971. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells.Biochim. Biophys. Acta 233:334–347

    PubMed  Google Scholar 

  2. Baenziger, J.U., Fiete, D. 1979. Structural determinants of Concanavalin A specificity for oligosaccharides.J. Biol. Chem. 254:2400–2407

    PubMed  Google Scholar 

  3. Bartles, J.R., Braiterman, L.T., Hubbard, A.L. 1985. Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane.J. Cell Biol. 100:1126–1138

    PubMed  Google Scholar 

  4. Bartles, J.R., Hubbard, A.L. 1984.125I-Wheat germ agglutinin blotting: Increased sensitivity with polyvinylpyrrolidone quenching and periodate oxidation/reductive phenylamination.Anal. Biochem. 140:284–292

    PubMed  Google Scholar 

  5. Beeley, J.G. 1985. Glycoprotein and proteoglycan techniques.In: Laboratory Techniques in Biochemistry and Molecular Biology. Vol. 16, pp. 1–425. R.H. Burdon and P.H. van Knippenberg, editors. Elsevier, New York

    Google Scholar 

  6. Bluemink, J.G., Tertoolen, L.G.J. 1978. The plasma membrane IMP pattern as related to animal-vegetal polarity in the amphibian egg.Dev. Biol. 62:334–343

    PubMed  Google Scholar 

  7. Bordier, C. 1981. Phase separation of integral membrane proteins in Triton-X-114 solution.J. Biol. Chem. 256:1604–1607

    Google Scholar 

  8. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254

    PubMed  Google Scholar 

  9. Callen, J.C., Torte, M., Dennebouy, N., Monolou, J.C. 1980. Mitochondrial development in oocytes ofXenopus laevis.J. Biol. Cell. 38:13–18

    Google Scholar 

  10. Colman, A. 1984. Translation of eukaryotic messenger RNA inXenopus oocytes.In: Transcription and Translation: A Practical Approach. B.D. Hames and S.J. Higgins, itors. pp. 271–302. IRL, Oxford

    Google Scholar 

  11. Cummings, R.D., Kornfeld, S. 1982. Fractionation of asparagine-linked oligosaccharides by serial lectin-agarose affinity chromatography.J. Biol. Chem. 257:11235–11240

    PubMed  Google Scholar 

  12. Faust, P.L., Wall, D.A., Perara, E., Lingappa.—., Kornfeld, S. 1987. Expression of human cathepsin D inXenopus oocytes: Phosphorylation and intracellular targeting.J. Cell Biol. 105:1937–1945

    PubMed  Google Scholar 

  13. Franke, W.W., Rathke, P.C., Seib, E., Trendelenberg, M.F., Osborn, M., Weber, K. 1976. Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte.Cytobiologie 14:111–130

    PubMed  Google Scholar 

  14. Franz, J.K., Gall, L., Williams, M.A., Picheral, B., Franke, W.W. 1983. Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frogXenopus.Proc. Natl. Acad. Sci. USA 80:6254–6258

    PubMed  Google Scholar 

  15. Godsave, S.F., Wylie, C.C., Lane, E.B., Anderton, B.H. 1984. Intermediate filaments in theXenopus oocyte: The appearance and distribution of cytokeratin-containing filaments.J. Embryol. Exp. Morphol. 83:157–167

    PubMed  Google Scholar 

  16. Green, J.D., Narahara, H.T. 1980. Assay of succinate dehydrogenase activity by the tetrazolium method: Evaluation of an improved technique in skeletal muscle fractions.J. Histochem. Cytochem. 28:408–412

    PubMed  Google Scholar 

  17. Hubbard, A.L., Wall, D.A., Ma, A. 1982. Isolation of rat hepatocyte plasma membranes: I. Presence of the three major domains.J. Cell Biol. 96:217–229

    Google Scholar 

  18. Kinsey, W.H., Decker, G.L., Lennarz, W.J. 1980. Isolation and partial characterization of the plasma membrane of the sea urchin egg.J. Cell Biol. 87:248–254

    PubMed  Google Scholar 

  19. Kreibich, G., Debey, P., Sabatini, D.D. 1973. Selective release of content from microsomal vesicles without membrane disassembly.J. Cell Biol. 58:436–462

    PubMed  Google Scholar 

  20. Krusius, T., Finne, J., Rauvala, H. 1976. The structural basis of the different affinities of two types of acidic N-glycosidic glycopeptides for Concanavalin A-Sepharose.FEBS Lett. 71:117–120

    Google Scholar 

  21. Markwell, M.K., Haas, S.M., Bieber, L.L., Tolbert, N.E. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples.Anal. Biochem. 87:206–210

    PubMed  Google Scholar 

  22. Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M., Numa, S. 1986. Experession of functional sodium channels from cloned cDNA.Nature (London) 322:826–828

    Google Scholar 

  23. Ogata, S., Muramatsu, T., Kobata, A. 1975. Fractionation of glycopeptides by affinity column chromatography on Concanavalin A-Sepharose.J. Biochem. (Tokyo) 78:687–696

    Google Scholar 

  24. Paoletti, E., Rosemond-Hornbeak, H., Moss, B. 1974. Two nucleic acid-dependent nucleoside triphosphate phosphohydrolases fromVaccinia virus: Purification and characterization.J. Biol. Chem. 249:3273–3280

    PubMed  Google Scholar 

  25. Peacock, S.L., Bates, M.P., Russell, D.W., Brown, M.S., Goldstein, J.L. 1988. Human low density lipoprotein receptor expressed inXenopus oocytes: Conserved signals for o-linked glycosylation and receptor-mediated endocytosis.J. Biol. Chem. 263:7838–7845

    PubMed  Google Scholar 

  26. Richter, H.-P. 1980. SDS-polyacrylamide gel electrophoresis of isolated cortices ofXenopus laevis eggs.Cell Biol. Int. Rep. 4:985–995

    PubMed  Google Scholar 

  27. Richter, H.-P., Tintschl, A. 1983. Cortex and plasma membrane proteins ofXenopus laevis oocytes.Cell Biol. Int. Rep. 7:1105–1114

    PubMed  Google Scholar 

  28. Roberson, M.M., Barondes, S.H. 1982. Lectin from embryos and oocytes ofXenopus laevis: Purification and properties.J. Biol. Chem. 257:7520–7524

    PubMed  Google Scholar 

  29. Roberson, M.M., Barondes, S.H. 1983.Xenopus laevis lectin is localized at several sites inXenopus oocytes, eggs, and embryos.J. Cell Biol. 97:1875–1881

    PubMed  Google Scholar 

  30. Sadler, S., Maller, J.L. 1981. Progesterone inhibits adenylate cyclase inXenopus oocytes.J. Biol. Chem. 256:6368–6373

    PubMed  Google Scholar 

  31. Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., Numa, S. 1985. Role of acetylcholine receptor subunits in gating of the channel.Nature (London) 318:538–543

    Google Scholar 

  32. Schofield, P.R., Darlinson, M.G., Fujita, N., Burt, D.R., Stephenson, F.A., Rodriguez, H., Rhee, L.M., Ramachandran, J., Reale, V., Glencourse, T.A., Seeburg, P.H., 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family.Nature (London) 328:221–227

    Article  Google Scholar 

  33. Selman, G.G., Pawsey, G.J. 1963. The utilization of yolk platelets by tissues ofXenopus embryos studied by a safranin staining method.J. Embryol. Exp. Morphol. 14:191–212.

    Google Scholar 

  34. Stenuit, K., Geuskens, M., Steinert, G., Tencer, R. 1977. Concanavalin A binding to oocytes and eggs ofXenopus.Exp. Cell Res. 105:159–168

    PubMed  Google Scholar 

  35. Sumikawa, K., Parker, I., Miledi, R. 1984. Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels.Proc. Nat. Acad. Sci. USA 81:7994–7998

    PubMed  Google Scholar 

  36. Sztul, E.S., Hendrick, J.P., Kraus, J.P., Wall, D.A., Kalousek, F., Rosenberg, L.E. 1987. Import of rat ornithine transcarbamylase precursor into mitochondria: Two step processing of the leader peptide.J. Cell Biol. 105:2631–2639

    PubMed  Google Scholar 

  37. Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T., Takahashi, H., Takahashi, T., Kuno, M., Numa, S. 1985. Cloning, sequencing, and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle.Nature (London) 315:761–764

    Google Scholar 

  38. Touster, O., Aronson, N.N., Jr., Dulaney, J.T., Hendrickson, H. 1970. Isolation of rat liver plasma membrane: Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes.J. Cell Biol. 47:604–618

    PubMed  Google Scholar 

  39. Wall, D.A., Meleka, I. 1985. An unusual lysosome compartment involved in vitellogenin endocytosis byXenopus oocytes.J. Cell Biol. 101:1651–1664

    PubMed  Google Scholar 

  40. Wall, D.A., Patel, S. 1987. Multivesicular bodies play a key role in vitellogenin endocytosis.Dev. Biol. 119:275–289

    PubMed  Google Scholar 

  41. Wall, D.A., Patel, S. 1987. The intracellular fate of vitellogenin inXenopus oocytes is determined by its extracellular concentration during endocytosis.J. Biol. Chem. 262:14779–14789

    PubMed  Google Scholar 

  42. Wallace, R.A. 1984. Vitellogenesis and oocyte growth: Nonmammalian vertebrates.In: Developmental Biology: A Comprehensive Synthesis. Vol. 1, pp. 1–37. L. Browder, editor. Plenum, New York

    Google Scholar 

  43. Wallace, R.A., Jared, D.W., Dumont, J.N., Sega, M.W. 1973. Protein incorporation by isolated amphibian oocytes: III. Optimum incubation conditions.J. Exp. Zool. 184:321–333

    PubMed  Google Scholar 

  44. Wallace, R.A., Opresko, L., Wiley, H.S., Selman, K. 1983. The oocyte as an endocytotic cell.Ciba Found. Symp. 98:228–248

    PubMed  Google Scholar 

  45. Wiley, H.S., Wallace, R.A. 1981. The structure of vitellogenin.J. Biol. Chem. 256:8626–8634

    PubMed  Google Scholar 

  46. Williams, J. 1967. Yolk Utilization.In: The Biochemistry of Animal Development. Vol. 2, pp. 341–382. Weber, editor. Academic, New York

    Google Scholar 

  47. Wolf, D.P., Nishihara, T., West, D.M., Wyrick, R.E., Hedrick, J.L. 1976. Isolation, physicochemical properties, and the macromolecular composition of the vitelline and fertilization envelopes fromXenopus laevis eggs.Biochemistry 15:3671–3678

    PubMed  Google Scholar 

  48. Wray, W., Boulikas, T., Wray, V.P., Hancock, R. 1981. Silver staining of proteins in polyacrylamide gels.Anal. Biochem. 118:197–203

    PubMed  Google Scholar 

  49. Wylie, C.C., Brown, D., Godsave, S.F., Quarmby, J., Heasman, J. 1985. The cytoskeleton ofXenopus oocytes and its role in development.J. Embryol. Exp. Morphol. Suppl. 89:1–15

    Google Scholar 

  50. Young, G.P.H., Young, J.D.-E., Deshpande, A.K., Goldstein, M., Koide, S.S., Cohn, Z.A. 1984. A Ca2+-activated channel fromXenopus laevis oocyte membranes reconstituted into planar bilayers.Proc. Natl. Acad. Sci. USA 81:5155–5159

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, D.A., Patel, S. Isolation of plasma membrane complexes fromXenopus oocytes. J. Membrain Biol. 107, 189–201 (1989). https://doi.org/10.1007/BF01871724

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871724

Key Words

Navigation