Skip to main content

Using Xenopus Oocyte Extracts to Study Signal Transduction

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Xenopus oocytes are naturally arrested at G2/M in prophase I of meiosis. Stimulation with progesterone initiates a nontranscriptional signaling pathway that culminates in the activation of Cdc2/cyclin B and reentry into meiosis. This pathway presents a paradigm for nongenomic signaling by steroid hormones and for the G2/M cell cycle transition. It has been extensively studied using intact oocytes, which are amenable to microinjection and biochemical analyses described elsewhere in this book. However, there are several experimental advantages in using in vitro systems consisting of cytosolic fractions of prophase-arrested oocytes. Because of their homogeneous nature, extracts avoid the difficulties of signaling asynchrony between individual oocytes. They are also amenable to biochemical manipulations such as protein immunodepletions, and proteins and pharmacological agents can be added easily. Despite these features, oocyte extracts have yet to achieve the widespread utility of Xenopus egg extracts, which can proceed through rounds of deoxyribonucleic acid (DNA) replication and mitosis in vitro. Here, we review the historical development of oocyte extracts and discuss the factors most crucial to success in reproducing the signaling pathway and the G2/M transition in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmitt, A. and Nebreda, A. R. (2002) Signalling pathways in oocyte meiotic maturation. J. Cell Sci. 115, 2457–2459.

    CAS  PubMed  Google Scholar 

  2. Maller, J. L. (2001) The elusive progesterone receptor in Xenopus oocytes. Proc. Natl. head. Sci. USA 98, 8–10.

    Article  CAS  Google Scholar 

  3. Tian, J., Kim, S., Heilig, E., and Ruderman, J. V. (2000) Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc. Natl. Acad. Sci. USA 97, 14,358–14,363.

    Article  CAS  PubMed  Google Scholar 

  4. Bayaa, M, Booth, R. A., Sheng, Y., and Liu, X. J. (2000) The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc. Natl. Acad. Sci. USA 97, 12,607–12,612.

    Article  CAS  PubMed  Google Scholar 

  5. Bagowski, C. P., Myers, J. W., and Ferrell, J. E., Jr. (2001) The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J. Biol. Chem. 276, 37,708–37,714.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Y., Bond, J., and Thomas, P. (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. USA 100, 2237–2242.

    Article  CAS  PubMed  Google Scholar 

  7. Lohka, M. J. and Maller, J. L. (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol. 101, 518–523.

    Article  CAS  PubMed  Google Scholar 

  8. Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581–605.

    Article  CAS  PubMed  Google Scholar 

  9. Desai, A., Murray, A., Mitchison, T. J., and Walczak, C. E. (1999) The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412.

    Article  CAS  PubMed  Google Scholar 

  10. Qian, Y. W., Erikson, E., Taieb, F. E., and Maller, J. L. (2001) The polo-like kinase Plxl is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol. Biol. Cell 12, 1791–1799.

    CAS  PubMed  Google Scholar 

  11. Shibuya, E. K., Polverino, A. J., Chang, E., Wigler, M., and Ruderman, J. V. (1992) Oncogenic ras triggers the activation of 42-kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89, 9831–9835.

    Article  CAS  PubMed  Google Scholar 

  12. Shibuya, E. K. and Ruderman, J. V. (1993) Mos induces the in vitro activation of mitogen-activated protein kinases in lysates of frog oocytes and mammalian somatic cells. Mol. Biol. Cell 4, 781–790.

    CAS  PubMed  Google Scholar 

  13. Nebreda, A. R. and Hunt, T. (1993) The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J. 12, 1979–1986.

    CAS  PubMed  Google Scholar 

  14. Huang, C. Y. and Ferrell, J. E., Jr. (1996) Dependence of Mos-induced Cdc2 activation on MAP kinase function in a cell-free system. EMBO J. 15, 2169–2173.

    CAS  PubMed  Google Scholar 

  15. VanRenterghem, B., Browning, M. D., and Maller, J. L. (1994) Regulation of mitogen-activated protein kinase activation by protein kinases A and C in a cell-free system. J. Biol. Chem. 269, 24,666–24,672.

    CAS  PubMed  Google Scholar 

  16. Shibuya, E. K., Morris, J., Rapp, U. R., and Ruderman, J. V. (1996) Activation of the Xenopus oocyte mitogen-activated protein kinase pathway by Mos is independent of Raf. Cell Growth Differ. 7, 235–241.

    CAS  PubMed  Google Scholar 

  17. Hattori, S., Fukuda, M, Yamashita, T., Nakamura, S., Gotoh, Y., and Nishida, E. (1992) Activation of mitogen-activated protein kinase and its activator by ras in intact cells and in a cell-free system. J. Biol. Chem. 267, 20,346–20,351.

    CAS  PubMed  Google Scholar 

  18. VanRenterghem, B., Gibbs, J. B., and Maller, J. L. (1993) Reconstitution of p21ras-dependent and-independent mitogen-activated protein kinase activation in a cell-free system. J. Biol. Chem. 268, 19,935–19,938.

    CAS  PubMed  Google Scholar 

  19. Yang, J., Winkler, K., Yoshida, M., and Kornbluth, S. (1999) Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. EMBO J. 18, 2174-2183.

    Google Scholar 

  20. Duckworth, B. C, Weaver, J. S., and Ruderman, J. V. (2002) G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc. Natl. Acad. Sci. USA 99, 16,794–16,799.

    Article  CAS  PubMed  Google Scholar 

  21. Mendez, R., Hake, L. E., Andresson, T., Littlepage, L. E., Ruderman, J. V., and Richter, J. D. (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307.

    Article  CAS  PubMed  Google Scholar 

  22. Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L., and Richter, J. D. (2000) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  23. Palmer, A., Gavin, A. C, and Nebreda, A. R. (1998) A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Mytl. EMBO J. 17, 5037–5047.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Crane, R.F., Ruderman, J.V. (2006). Using Xenopus Oocyte Extracts to Study Signal Transduction. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics