Skip to main content

Cell Cycle Synchronization in Xenopus Egg Extracts

  • Protocol
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1342))

Abstract

Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laskey RA, Mills AD, Morris NR (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237–243

    Article  CAS  PubMed  Google Scholar 

  2. Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220:719–721

    Article  CAS  PubMed  Google Scholar 

  3. Lohka MJ, Masui Y (1984) Effects of Ca2+ ions on the formation of metaphase chromosomes and sperm pronuclei in cell-free preparations from unactivated Rana pipiens eggs. Dev Biol 103:434–442

    Article  CAS  PubMed  Google Scholar 

  4. Lohka MJ, Masui Y (1984) Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. J Cell Biol 98:1222–1230

    Article  CAS  PubMed  Google Scholar 

  5. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  6. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  7. Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339:275–280

    Article  CAS  PubMed  Google Scholar 

  8. Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47:577–587

    Article  CAS  PubMed  Google Scholar 

  9. Blow JJ, Watson JV (1987) Nuclei act as independent and integrated units of replication in a Xenopus cell-free DNA replication system. EMBO J 6:1997–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shamu CE, Murray AW (1992) Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J Cell Biol 117:921–934

    Article  CAS  PubMed  Google Scholar 

  11. Lohka MJ, Hayes MK, Maller JL (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci U S A 85:3009–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murray AW, Solomon MJ, Kirschner MW (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339:280–286

    Article  CAS  PubMed  Google Scholar 

  13. Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hodgson B, Li A, Tada S, Blow JJ (2002) Geminin becomes activated as an inhibitor of Cdt1/RLF-B following nuclear import. Curr Biol 12:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blow JJ, Laskey RA (1988) A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332:546–548

    Article  CAS  PubMed  Google Scholar 

  16. Gillespie PJ, Li A, Blow JJ (2001) Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochem 2:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gambus A, Khoudoli GA, Jones RC, Blow JJ (2011) Mcm2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 286:11855–11864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blow JJ, Nurse P (1990) A cdc2-like protein is involved in the initiation of DNA replication in Xenopus egg extracts. Cell 62:855–862

    Article  CAS  PubMed  Google Scholar 

  19. Fang F, Newport JW (1991) Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66:731–742

    Article  CAS  PubMed  Google Scholar 

  20. Roberts BT, Ying CY, Gautier J, Maller JL (1999) DNA replication in vertebrates requires a homolog of the Cdc7 protein kinase. Proc Natl Acad Sci U S A 96:2800–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jares P, Blow JJ (2000) Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev 14:1528–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Walter JC (2000) Evidence for sequential action of cdc7 and Cdk 2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem 275:39773–39778

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida K, Takisawa H, Kubota Y (2005) Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in Xenopus eggs. Genes Cells 10:63–73

    Article  CAS  PubMed  Google Scholar 

  24. Pacek M, Walter JC (2004) A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J 23:3667–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346:1253596

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moreno SP, Bailey R, Campion N, Herron S, Gambus A (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346:477–481

    Article  PubMed  Google Scholar 

  27. Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6:476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minshull J, Blow JJ, Hunt T (1989) Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56:947–956

    Article  CAS  PubMed  Google Scholar 

  29. Lohka MJ, Maller JL (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol 101:518–523

    Article  CAS  PubMed  Google Scholar 

  30. Sawin KE, Mitchison TJ (1991) Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 112:925–940

    Article  CAS  PubMed  Google Scholar 

  31. Minshull J, Golsteyn R, Hill CS, Hunt T (1990) The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J 9:2865–2875

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Strausfeld UP, Howell M, Descombes P, Chevalier S, Rempel RE, Adamczewski J, Maller JL, Hunt T, Blow JJ (1996) Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci 109(Pt 6):1555–1563

    CAS  PubMed  Google Scholar 

  33. Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW (1990) Cyclin activation of p34cdc2. Cell 63:1013–1024

    Article  CAS  PubMed  Google Scholar 

  34. Walter J, Sun L, Newport J (1998) Regulated chromosomal DNA replication in the absence of a nucleus. Mol Cell 1:519–529

    Article  CAS  PubMed  Google Scholar 

  35. Lebofsky R, Takahashi T, Walter JC (2009) DNA replication in nucleus-free Xenopus egg extracts. Methods Mol Biol 521:229–252

    Article  CAS  PubMed  Google Scholar 

  36. Masui Y (1974) A cytostatic factor in amphibian oocytes: its extraction and partial characterization. J Exp Zool 187:141–147

    Article  CAS  PubMed  Google Scholar 

  37. Masui Y (2001) From oocyte maturation to the in vitro cell cycle: the history of discoveries of Maturation-Promoting Factor (MPF) and Cytostatic Factor (CSF). Differentiation 69:1–17

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Grimison B, Maller JL (2007) New insight into metaphase arrest by cytostatic factor: from establishment to release. Oncogene 26:1286–1289

    Article  CAS  PubMed  Google Scholar 

  39. Isoda M, Sako K, Suzuki K, Nishino K, Nakajo N, Ohe M, Ezaki T, Kanemori Y, Inoue D, Ueno H, Sagata N (2011) Dynamic regulation of Emi2 by Emi2-bound Cdk1/Plk1/CK1 and PP2A-B56 in meiotic arrest of Xenopus eggs. Dev Cell 21:506–519

    Article  CAS  PubMed  Google Scholar 

  40. Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437:1048–1052

    Article  CAS  PubMed  Google Scholar 

  41. Li A, Blow JJ (2004) Non-proteolytic inactivation of geminin requires CDK-dependent ubiquitination. Nat Cell Biol 6:260–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li A, Blow JJ (2005) Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J 24:395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blow JJ (1993) Preventing re-replication of DNA in a single cell cycle: evidence for a replication licensing factor. J Cell Biol 122:993–1002

    Article  CAS  PubMed  Google Scholar 

  44. Kubota Y, Takisawa H (1993) Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts. J Cell Biol 123:1321–1331

    Article  CAS  PubMed  Google Scholar 

  45. Mochida S, Hunt T (2007) Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature 449:336–340

    Article  CAS  PubMed  Google Scholar 

  46. Mochida S, Ikeo S, Gannon J, Hunt T (2009) Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J 28:2777–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murphy J, Crompton CM, Hainey S, Codd GA, Hutchison CJ (1995) The role of protein phosphorylation in the assembly of a replication competent nucleus: investigations in Xenopus egg extracts using the cyanobacterial toxin microcystin-LR. J Cell Sci 108:235–244

    CAS  PubMed  Google Scholar 

  48. Nishiyama A, Tachibana K, Igarashi Y, Yasuda H, Tanahashi N, Tanaka K, Ohsumi K, Kishimoto T (2000) A nonproteolytic function of the proteasome is required for the dissociation of Cdc2 and cyclin B at the end of M phase. Genes Dev 14:2344–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Newport J (1987) Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48:205–217

    Article  CAS  PubMed  Google Scholar 

  50. Sheehan MA, Mills AD, Sleeman AM, Laskey RA, Blow JJ (1988) Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J Cell Biol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  51. Blow JJ, Sleeman AM (1990) Replication of purified DNA in Xenopus egg extract is dependent on nuclear assembly. J Cell Sci 95:383–391

    CAS  PubMed  Google Scholar 

  52. Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ (2014) Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol 4:130138

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kisielewska J, Blow JJ (2012) Dynamic interactions of high Cdt1 and geminin levels regulate S phase in early Xenopus embryos. Development 139:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi TS, Yiu P, Chou MF, Gygi S, Walter JC (2004) Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat Cell Biol 6:991–996

    Article  CAS  PubMed  Google Scholar 

  56. Gillespie PJ, Hirano T (2004) Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr Biol 14:1598–1603

    Article  CAS  PubMed  Google Scholar 

  57. Gillespie PJ, Khoudoli GA, Stewart G, Swedlow JR, Blow JJ (2007) ELYS/MEL-28 chromatin association coordinates nuclear pore complex assembly and replication licensing. Curr Biol 17:1657–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khoudoli GA, Gillespie PJ, Stewart G, Andersen JS, Swedlow JR, Blow JJ (2008) Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition. Curr Biol 18:838–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oehlmann M, Score AJ, Blow JJ (2004) The role of Cdc6 in ensuring complete genome licensing and S phase checkpoint activation. J Cell Biol 165:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mahbubani HM, Chong JP, Chevalier S, Thommes P, Blow JJ (1997) Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J Cell Biol 136:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blow JJ, Ge XQ (2009) A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep 10:406–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blow JJ, Ge XQ, Jackson DA (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luciani MG, Oehlmann M, Blow JJ (2004) Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 117:6019–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masai H, Arai K (2002) Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 190:287–296

    Article  CAS  PubMed  Google Scholar 

  66. Sheu YJ, Stillman B (2010) The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463:113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takahashi TS, Walter JC (2005) Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Dev 19:2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takahashi TS, Basu A, Bermudez V, Hurwitz J, Walter JC (2008) Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev 22:1894–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kobayashi H, Golsteyn R, Poon R, Stewart E, Gannon J, Minshull J, Smith R, Hunt T (1991) Cyclins and their partners during Xenopus oocyte maturation. Cold Spring Harb Symp Quant Biol 56:437–447

    Article  CAS  PubMed  Google Scholar 

  70. Krasinska L, Besnard E, Cot E, Dohet C, Mechali M, Lemaitre JM, Fisher D (2008) Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J 27:758–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258

    Article  CAS  PubMed  Google Scholar 

  73. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332

    Article  CAS  PubMed  Google Scholar 

  74. Zegerman P, Diffley JF (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285

    Article  CAS  PubMed  Google Scholar 

  75. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2011) Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol 193:995–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2010) Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 140:349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458

    Article  CAS  PubMed  Google Scholar 

  78. Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90:625–634

    Article  CAS  PubMed  Google Scholar 

  79. Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521

    Article  CAS  PubMed  Google Scholar 

  80. Emanuele MJ, Lan W, Jwa M, Miller SA, Chan CS, Stukenberg PT (2008) Aurora B kinase and protein phosphatase 1 have opposing roles in modulating kinetochore assembly. J Cell Biol 181:241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qian YW, Erikson E, Taieb FE, Maller JL (2001) The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell 12:1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bernis C, Forbes DJ (2014) Analysis of nuclear reconstitution, nuclear envelope assembly, and nuclear pore assembly using Xenopus in vitro assays. Methods Cell Biol 122:165–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gillespie PJ, Gambus A, Blow JJ (2012) Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods 57:203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dimitrova DS, Gilbert DM (1998) Regulation of mammalian replication origin usage in Xenopus egg extract. J Cell Sci 111(Pt 19):2989–2998

    CAS  PubMed  Google Scholar 

  86. Chong JP, Mahbubani HM, Khoo CY, Blow JJ (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375:418–421

    Article  CAS  PubMed  Google Scholar 

  87. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    Article  CAS  PubMed  Google Scholar 

  88. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78:67–74

    Article  CAS  PubMed  Google Scholar 

  89. Gu Y, Turck CW, Morgan DO (1993) Inhibition of Cdk2 activity in vivo by an associated 20K regulatory subunit. Nature 366:707–710

    Article  CAS  PubMed  Google Scholar 

  90. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  PubMed  Google Scholar 

  91. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  CAS  PubMed  Google Scholar 

  92. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  CAS  PubMed  Google Scholar 

  93. Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, Marchesi V, Tibolla M, Tenca P, Brotherton D, Albanese C, Patton V, Alzani R, Ciavolella A, Sola F, Molinari A, Volpi D, Avanzi N, Fiorentini F, Cattoni M, Healy S, Ballinari D, Pesenti E, Isacchi A, Moll J, Bensimon A, Vanotti E, Santocanale C (2008) A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 4:357–365

    Article  CAS  PubMed  Google Scholar 

  94. Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618

    Article  CAS  PubMed  Google Scholar 

  95. Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, Tsurimoto T, Yoshikawa H (1998) Regulation of DNA-replication origins during cell-cycle progression. Nature 395:618–621

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Julian Blow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gillespie, P.J., Neusiedler, J., Creavin, K., Chadha, G.S., Blow, J.J. (2016). Cell Cycle Synchronization in Xenopus Egg Extracts. In: Coutts, A., Weston, L. (eds) Cell Cycle Oscillators. Methods in Molecular Biology, vol 1342. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2957-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2957-3_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2956-6

  • Online ISBN: 978-1-4939-2957-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics