Skip to main content

Analysis of Various Body Parts of Drosophila Under a Scanning Electron Microscope

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 561 Accesses

Abstract

Scanning electron microscope (SEM) helps to analyse the surface of any cell or organ by magnifying it several times. SEM analysis provides an indispensable tool for people working with a small model organism like Drosophila. Various morphological abnormalities originated in different body parts during development can be visualized after SEM analysis. The images generated from SEM make it easy to characterize the morphological defect. SEM is recently attached with Energy-Dispersive X-ray Spectroscopy (EDX/EDS). This allows detecting all the metals present within the organ. The current protocol describes the fixation of Drosophila head, haltere, hemolymph and gut for SEM analysis. We are also describing the metal analysis of the gut using EDS or EDX analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning, Sudbury

    Google Scholar 

  2. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope. Springer Science & Business Media, New York

    Book  Google Scholar 

  3. Williams DB, Carter CB (1996) The transmission electron microscope. In: Transmission electron microscopy. Springer, pp 3–17

    Google Scholar 

  4. Wollman DA, Irwin KD, Hilton GC, Dulcie L, Newbury DE, Martinis JM (1997) High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc 188(3):196–223

    Article  CAS  Google Scholar 

  5. Kutchko BG, Kim AG (2006) Fly ash characterization by SEM–EDS. Fuel 85(17–18):2537–2544

    Article  CAS  Google Scholar 

  6. Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis. Springer, New York

    Google Scholar 

  7. Choudhary OP, Malik P (2017) Scanning electron microscope: advantages and disadvantages in imaging components. Int J Curr Microbiol Appl Sci 6:1877. https://doi.org/10.20546/ijcmas.2017.605.207

    Article  CAS  Google Scholar 

  8. McMullan D (1995) Scanning electron microscopy 1928–1965. Scanning 17(3):175–185

    Article  CAS  Google Scholar 

  9. Reed SJB (2005) Electron microprobe analysis and scanning electron microscopy in geology. Cambridge university press, Cambridge

    Book  Google Scholar 

  10. Henchcliffe C, García-Alonso L, Tang J, Goodman CS (1993) Genetic analysis of laminin A reveals diverse functions during morphogenesis in Drosophila. Development 118(2):325–337

    CAS  PubMed  Google Scholar 

  11. Alone DP, Tiwari AK, Mandal L, Li M, Mechler BM, Roy JK (2004) Rab11 is required during Drosophila eye development. Int J Dev Biol 49(7):873–879

    Article  Google Scholar 

  12. Geisbrecht ER, Haralalka S, Swanson SK, Florens L, Washburn MP, Abmayr SM (2008) Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization. Dev Biol 314(1):137–149

    Article  CAS  Google Scholar 

  13. Tokunaga C, Gerhart JC (1976) The effect of growth and joint formation on bristle pattern in D. melanogaster. J Exp Zool 198(1):79–95

    Article  CAS  Google Scholar 

  14. Lees AD, Waddington CH (1942) The development of the bristles in normal and some mutant types of Drosophila melanogaster. Proc R Soc Lond Ser B-Biol Sci 131(862):87–110

    Article  Google Scholar 

  15. Yasuzumi G, Deguchi N (1958) Submicroscopic structure of the compound eye as revealed by electron microscopy. J Ultrastruct Res 1(3):259–270

    Article  CAS  Google Scholar 

  16. Mishra M, Knust E (2012) Analysis of the Drosophila compound eye with light and electron microscopy. In: Retinal degeneration. Springer, pp 161–182

    Google Scholar 

  17. Cribbs D, Benassayag C, Randazzo F, Kaufman T (1995) Levels of homeotic protein function can determine developmental identity: evidence from low level expression of the Drosophila homeotic gene proboscipedia under Hsp70 control. EMBO J 14(4):767–778

    Article  CAS  Google Scholar 

  18. Benassayag C, Plaza S, Callaerts P, Clements J, Romeo Y, Gehring WJ, Cribbs DL (2003) Evidence for a direct functional antagonism of the selector genes proboscipedia and eyeless in Drosophila head development. Development 130(3):575–586

    Article  CAS  Google Scholar 

  19. Szabad J, Bellen HJ, Venken KJ (2012) An assay to detect in vivo Y chromosome loss in Drosophila wing disc cells. G3 2(9):1095–1102

    Article  CAS  Google Scholar 

  20. Johnson SA, Milner MJ (1987) The final stages of wing development in Drosophila melanogaster. Tissue Cell 19(4):505–513

    Article  CAS  Google Scholar 

  21. Foelix R, Stocker R, Steinbrecht R (1989) Fine structure of a sensory organ in the arista of Drosophila melanogaster and some other dipterans. Cell Tissue Res 258(2):277–287

    Article  CAS  Google Scholar 

  22. Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230(2):243–257

    Article  CAS  Google Scholar 

  23. Stofanko M, Kwon SY, Badenhorst P (2010) Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 5(11):e14051

    Article  Google Scholar 

  24. Pappus SA, Ekka B, Sahu S, Sabat D, Dash P, Mishra M (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanopart Res 19(4):136

    Article  Google Scholar 

  25. Silva J, Boleli I, Simões Z (2002) Hemocyte types and total and differential counts in unparasitized and parasitized Anastrepha obliqua (Diptera, Tephritidae) larvae. Braz J Biol 62(4A):689–699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JB is thankful to BT/PR21857/NNT/28/1238/2017 for financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054, Odisha DBT 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bag, J., Mishra, M. (2020). Analysis of Various Body Parts of Drosophila Under a Scanning Electron Microscope. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics