Skip to main content

Production of Oleaginous Organisms or Lipids Using Sewage Water and Industrial Wastewater

  • Protocol
  • First Online:
Microbial Lipid Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1995))

Abstract

Worldwide, wastewater produced from sewage and industry poses a serious risk to the surrounding environment. As a way to address this problem, an integrated approach for cultivation of oleaginous microorganisms on wastewater leading to effective removal of hazardous components and sustainable production of biodiesel is proposed. Oleaginous yeasts have the unique ability to utilize wastewater as feedstock and accumulate large amounts of triacylglycerols within their cellular compartments at stationary phase (144 h). The lipids stored in an oleaginous microbe can be visualized by fluorescence microscopy and converted into biodiesel through transesterification after extraction. Here, we describe the batch cultivation of oleaginous yeast on sewage and industrial wastewater at 25 °C. High lipid accumulation with efficient removal of toxic chemicals can be achieved by utilizing this integrated method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel A, Arora N, Pruthi V, Pruthi PA (2016) Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. J Clean Prod 142:2858–2864

    Article  Google Scholar 

  2. Arora N, Patel A, Sartaj K, Pruthi PA, Pruthi V (2016) Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Environ Sci Pollut Res 23:20997–21007

    Article  CAS  Google Scholar 

  3. Lamers D, Biezen NV, Martens D, Peters L, Zilver EVD, Dreumel NJ-N, Wijffels RH, Lokman C (2016) Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol 16:45

    Article  Google Scholar 

  4. Beopoulos A, Verbeke J, Bordes F, Guicherd M, Bressy M, Marty A, Nicaud JM (2014) Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 98:251–262

    Article  CAS  Google Scholar 

  5. Deeba F, Pruthi V, Negi YS (2017) Fostering TAG accumulation in novel oleaginous yeast Cryptococcus psychrotolerans IITRFD utilizing groundnut shell for improved biodiesel production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.04.001

    Article  CAS  Google Scholar 

  6. Deeba F, Pruthi V, Negi YS (2016) Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresour Technol 213:96–102

    Article  CAS  Google Scholar 

  7. Patel A, Pravez M, Deeba F, Pruthi V, Singh RP, Pruthi PPA (2014) Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production. Bioresour Technol 165:214–222

    Article  CAS  Google Scholar 

  8. Vicente G, Bautista LF, Rodriguez R, Gutierrez FJ, Sadaba I, Ruiz-Vazquez RM, Torres-Martinez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  9. Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA (2015) Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol 197:91–98

    Article  CAS  Google Scholar 

  10. Patel A, Pruthi V, Singh RP, Pruthi PA (2015) Synergistic effect of fermentable and non-fermentable carbon sources enhances TAG accumulation in oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol 188:136–144

    Article  CAS  Google Scholar 

  11. Li XF, Xu H, Wu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  Google Scholar 

  12. Arora N, Patel A, Pruthi PA, Pruthi V (2016) Boosting TAG accumulation with improved biodiesel production from novel oleaginous microalgae Scenedesmus sp. IITRIND2 utilizing waste sugarcane bagasse aqueous extract (SBAE). Appl Biochem Biotechnol 180:109–121

    Article  CAS  Google Scholar 

  13. Arous F, Frikha F, Triantaphyllidou I-E, Aggelis G, Nasri M, Mechichi T (2016) Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. J Clean Prod 133:899–909

    Article  CAS  Google Scholar 

  14. Karakaya A, Laleli Y, Takaç S (2012) Development of process conditions for degradation of raw olive mill wastewater by Rhodotorula glutinis. Int Biodeter Biodegr 75:75–82

    Article  CAS  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  16. Tazeen R, Mular SM, Khan ZH, Khan ND (2017) Comparative analysis of sugar and protein in three different fresh and decaying fruits pomegranate, orange and sweet lime (musambi). IJAR 3:562–564

    Google Scholar 

  17. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  18. Fei W, Wang H, Fu X, Bielby C, Yang H (2009) Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem J 424:61–67

    Article  CAS  Google Scholar 

  19. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5:600–608

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Human Resource Development (MHRD), Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deeba, F., Pruthi, V., Negi, Y.S. (2019). Production of Oleaginous Organisms or Lipids Using Sewage Water and Industrial Wastewater. In: Balan, V. (eds) Microbial Lipid Production. Methods in Molecular Biology, vol 1995. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9484-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9484-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9483-0

  • Online ISBN: 978-1-4939-9484-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics