Skip to main content
Log in

Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The study illustrates the synergistic potential of novel microalgal, Chlamydomonas debaryana IITRIND3, for phycoremediation of domestic, sewage, paper mill and dairy wastewaters and then subsequent utilisation of its biomass for biodiesel production. Among these wastewaters, maximum lipid productivity (87.5 ± 2.3 mg L−1 day−1) was obtained in dairy wastewater with removal efficiency of total nitrogen, total phosphorous, chemical oxygen demand and total organic carbon to be 87.56, 82.17, 78.57 and 85.97 %, respectively. Metal ions such as sodium, calcium, potassium and magnesium were also removed efficiently from the wastewaters tested. Pigment analysis revealed loss of chlorophyll a while increase in carotenoid content in algal cells cultivated in different wastewaters. Biochemical data of microalgae grown in different wastewaters showed reduction in protein content with an increase in carbohydrate and lipid contents. The major fatty acids in algal cells grown in dairy wastewater were C14:0, C16:0, C16:1, C18:0, C18:2 and C18:3. The physical properties of biodiesel derived from microalgae grown in dairy wastewater were in compliance with the ASTM D6751 and EN 14214 fuel standards and were comparable to plant oil methyl esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66. doi:10.1016/j.biortech.2012.05.055

    Article  CAS  Google Scholar 

  • Amini M, Younesi H, Zinatizadeh Lorestani AA, Najafpour G (2013) Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients. Bioresour Technol 145:71–79. doi:10.1016/j.biortech.2013.01.111

    Article  CAS  Google Scholar 

  • Arora N, Patel A, Pruthi PA, Pruthi V (2016a) Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresour Technol 213:79–87. doi:10.1016/j.biortech.2016.02.112

    Article  CAS  Google Scholar 

  • Arora N, Patel A, Pruthi PA, Pruthi V (2016b) Boosting TAG accumulation with improved biodiesel production from novel oleaginous microalgae Scenedesmus sp. IITRIND2 utilizing waste sugarcane bagasse aqueous extract (SBAE). Appl Biochem Biotechnol. doi:10.1007/s12010-016-2086-8

    Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431. doi:10.1016/j.apenergy.2010.12.064

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3(4):1–14. doi:10.1186/1752-0509-3-4

    Google Scholar 

  • Dubois M, Gilles KA, Ton JKH, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Farooq W, Lee YC, Ryu BG, Kimd BH, Kimd HS, Choie YE, Yang JW (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238. doi:10.1016/j.biortech.2013.01.034

    Article  CAS  Google Scholar 

  • Feng Y, Li C, Zhang D (2011a) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105. doi:10.1016/j.biortech.2010.06.016

    Article  CAS  Google Scholar 

  • Feng D, Chen Z, Xue S, Zhang W (2011b) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102:6710–6716. doi:10.1016/j.biortech.2011.04.006

    Article  CAS  Google Scholar 

  • Guarnieri MT, Nag A, Yang S, Pienkos PT (2013) Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. J Proteome 93:245–253. doi:10.1016/j.jprot.2013.05.025

    Article  CAS  Google Scholar 

  • Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris: characteristics of induction and turnover. Plant Physiol 53:14–20. doi:10.1104/pp.53.1.14

    Article  CAS  Google Scholar 

  • Han L, Pei H, Hu W, Hana F, Songa M, Zhang S (2014) Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresour Technol 165:38–41. doi:10.1016/j.biortech.2014.03.131

    Article  CAS  Google Scholar 

  • Hasan R (2014) Bioremediation of swine wastewater and biofuel potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. J Pet Environ Biotechnol 5(3):175–180. doi:10.4172/2157-7463.1000175

    Article  Google Scholar 

  • Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14. doi:10.1016/j.wri.2015.02.002

    Article  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. JAOCS 83:823–833. doi:10.1007/s11746-006-5033-y

    CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18. doi:10.1007/s12010-009-8670-4

    Article  CAS  Google Scholar 

  • Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia CG (2013) Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol 51:62–69

    CAS  Google Scholar 

  • Kothari R, Pathak VV, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470. doi:10.1016/j.biortech.2012.03.121

    Article  CAS  Google Scholar 

  • Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour Technol 144:499–503. doi:10.1016/j.biortech.2013.06.116

    Article  CAS  Google Scholar 

  • Kumar K, Dasgupta CN, Das D (2014) Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour Technol 167:358–366. doi:10.1016/j.biortech.2014.05.118

    Article  CAS  Google Scholar 

  • Le Rouzic B (2012) Changes in photosynthetic yield (Fv/Fm) responses of salt-marsh microalgal communities along an osmotic gradient (Mont-Saint-Michel Bay, France). Estuar Coast Shelf Sci 115:326–333. doi:10.1016/j.ecss.2012.09.012

    Article  Google Scholar 

  • León R, Galvan F (1999) Interaction between saline stress and photoinhibition of photosynthesis in the freshwater green algae Chlamydomonas reinhardtii. Implications for glycerol photoproduction. Plant Physiol Biochem 37:623–628. doi:10.1016/S0981-9428(99)00139-4

    Article  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144. 10.1016/j.biortech.2011.01.091

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322. doi:10.1016/j.biortech.2010.04.092

    Article  CAS  Google Scholar 

  • Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z (2009) Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol 21:239–246. doi:10.1007/s10811-008-9355-z

    Article  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150. doi:10.1016/j.biortech.2014.03.130

    Article  CAS  Google Scholar 

  • Malla FA, Khan SA, Rashmi SGK, Gupta N, Abraham G (2015) Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng 75:343–349. doi:10.1016/j.ecoleng.2014.11.038

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. 10.1016/j.watres.2010.08.037

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25. doi:10.1016/j.biortech.2010.06.035

    Article  CAS  Google Scholar 

  • Qin L, Wang Z, Sun Y, Shu Q, Feng P, Zhu L, Xu J, Yuan Z (2016) Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res. doi:10.1007/s11356-015-6004-3

    Google Scholar 

  • Shen Q-H, Jiang J-W, Chen L-P, Cheng LH, Xu X-H, Chen H-L (2015) Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Bioresour Technol 190:257–263. doi:10.1016/j.biortech.2015.04.053

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91(3):835–844. doi:10.1007/s00253-011-3399-8

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500. doi:10.1016/j.biortech.2010.02.016

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae : water footprint and nutrients balance. Bioresour Technol 102:159–165. doi:10.1016/j.biortech.2010.07.017

    Article  CAS  Google Scholar 

  • Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Fenga P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302. doi:10.1016/j.watres.2013.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial support by the Department of Biotechnology (DBT), Govt. of India, Bio-Care Programme, DBT Sanction No.: 102/IFD/SAN/3539/2011-2012 (Grant No.: DBT-608-BIO) and JRF to Neha Arora (Grant No.: 7001-35-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Pruthi.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

Supplementary Figure 1

Nile red staining of C. debaryana IITRIND3 cells grown in different wastewaters (DOCX 1231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Patel, A., Sartaj, K. et al. Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Environ Sci Pollut Res 23, 20997–21007 (2016). https://doi.org/10.1007/s11356-016-7320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7320-y

Keywords

Navigation