Skip to main content

Integrated Host-Pathogen Metabolic Reconstructions

  • Protocol
  • First Online:
Metabolic Network Reconstruction and Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1716))

Abstract

The science and art of Genome scale metabolic network reconstructions have been explicitly documented in the literature for organisms across all the three kingdoms of life. Constraints-based models derived from such reconstructions have been used to assess metabolic phenotypes of their complex connections to genotype accurately. The problem of infectious disease is complex due to the multifactorial response of the host to the pathogen. Systems biology approaches and modeling allow one to study, understand, and predict emergent properties of such complex responses. The integration of the host and pathogen metabolic networks and the subsequent merger of their stoichiometric matrices is nontrivial and requires understanding of both pathogen and host metabolism and physiologies. The protocol here describes the detailed process of network and stoichiometric matrix merger using a salmonella-mouse macrophage model. The protocol also discusses the interfacial and objective functions required to actually embark on the analysis of host-pathogen interaction models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Burgner D, Jamieson SE, Blackwell JM (2006) Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect Dis 6(10):653–663. https://doi.org/10.1016/S1473-3099(06)70601-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mardinoglu A, Nielsen J (2012) Systems medicine and metabolic modelling. J Intern Med 271(2):142–154. https://doi.org/10.1111/j.1365-2796.2011.02493.x

    Article  CAS  PubMed  Google Scholar 

  3. Chan IS, Ginsburg GS (2011) Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet 12:217–244

    Article  CAS  PubMed  Google Scholar 

  4. Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93(1):16–26

    Article  PubMed  Google Scholar 

  5. Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897. https://doi.org/10.1038/nrmicro1023

    Article  CAS  PubMed  Google Scholar 

  7. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121. https://doi.org/10.1038/nprot.2009.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feist AM, Palsson BØ (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26(6):659–667. https://doi.org/10.1038/nbt1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143. https://doi.org/10.1038/nrmicro1949

    Article  CAS  PubMed  Google Scholar 

  10. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305. https://doi.org/10.1038/nrmicro2737

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Oberhardt MA, Gianchandani EP (2014) Genome-scale modeling and human disease: an overview. Front Physiol 5:527. https://doi.org/10.3389/fphys.2014.00527

    PubMed  Google Scholar 

  12. Thorleifsson SG, Thiele I (2011) rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27(14):2009–2010. https://doi.org/10.1093/bioinformatics/btr308

    Article  CAS  PubMed  Google Scholar 

  13. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307. https://doi.org/10.1038/nprot.2011.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadhukhan PP, Raghunathan A (2014) Investigating host–pathogen behavior and their interaction using genome-scale metabolic network models. Immunoinformatics 1184:523–562

    Google Scholar 

  15. Raghunathan A, Shin S, Daefler S (2010) Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis. BMC Syst Biol 4:118. https://doi.org/10.1186/1752-0509-4-118

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thiele I, Heinken A, Fleming RMT (2013) A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol 24(1):4–12. https://doi.org/10.1016/j.copbio.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  17. Raghunathan A, Reed J, Shin S, Palsson B, Daefler S (2009) Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol 3:38. https://doi.org/10.1186/1752-0509-3-38

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jamshidi N, Palsson BØ (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26. https://doi.org/10.1186/1752-0509-1-26

    Article  PubMed  PubMed Central  Google Scholar 

  19. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104(6):1777–1782. https://doi.org/10.1073/pnas.0610772104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BØ (2010) A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst Biol 4(1):140

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6(1):422

    PubMed  PubMed Central  Google Scholar 

  22. Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, Famili I (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5:180. https://doi.org/10.1186/1752-0509-5-180

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bordbar A, Palsson BO (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J Intern Med 271(2):131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huthmacher C, Hoppe A, Bulik S, Holzhütter H-G (2010) Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol 4:120. https://doi.org/10.1186/1752-0509-4-120

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wallqvist A, Fang X, Tewari SG, Ye P, Reifman J (2016) Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle. BMC Syst Biol 10(1):58. https://doi.org/10.1186/s12918-016-0291-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jamshidi N, Raghunathan A (2015) Cell scale host-pathogen modeling: another branch in the evolution of constraint-based methods. Front Microbiol 6:1032. https://doi.org/10.3389/fmicb.2015.01032

    Article  PubMed  PubMed Central  Google Scholar 

  27. Devoid S, Overbeek R, DeJongh M, Vonstein V, Best AA, Henry C (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985:17–45. https://doi.org/10.1007/978-1-62703-299-5_2

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 6:153. https://doi.org/10.1186/1752-0509-6-153

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3:299. https://doi.org/10.3389/fphys.2012.00299

    Article  PubMed  PubMed Central  Google Scholar 

  30. Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580. https://doi.org/10.1371/journal.pcbi.1003580

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bordbar A, Jamshidi N, Palsson BO (2011) iAB-RBC-283: a proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Syst Biol 5:110. https://doi.org/10.1186/1752-0509-5-110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Radrich K, Tsuruoka Y, Dobson P, Gevorgyan A, Swainston N, Baart G, Schwartz J-M (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst Biol 4(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  33. Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5):e1000082. https://doi.org/10.1371/journal.pcbi.1000082

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lakshmanan M, Koh G, Chung BK, Lee D-Y (2012) Software applications for flux balance analysis. Briefings Bioinf 15(1):108–122. bbs069

    Article  Google Scholar 

  35. Waltemath D, Karr JR, Bergmann FT, Chelliah V, Hucka M, Krantz M, Liebermeister W, Mendes P, Myers CJ, Pir P, Alaybeyoglu B, Aranganathan NK, Baghalian K, Bittig AT, Burke PEP, Cantarelli M, Chew YH, Costa RS, Cursons J, Czauderna T, Goldberg AP, Gomez HF, Hahn J, Hameri T, Gardiol DFH, Kazakiewicz D, Kiselev I, Knight-Schrijver V, Knupfer C, Konig M, Lee D, Lloret-Villas A, Mandrik N, Medley JK, Moreau B, Naderi-Meshkin H, Palaniappan SK, Priego-Espinosa D, Scharm M, Sharma M, Smallbone K, Stanford NJ, Song J-H, Theile T, Tokic M, Tomar N, Toure V, Uhlendorf J, Varusai TM, Watanabe LH, Wendland F, Wolfien M, Yurkovich JT, Zhu Y, Zardilis A, Zhukova A, Schreiber F (2016) Toward community standards and software for whole-cell modeling. IEEE Trans Biomed Eng 63(10):2007–2014. https://doi.org/10.1109/TBME.2016.2560762

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ebrahim A, Almaas E, Bauer E, Bordbar A, Burgard AP, Chang RL, Dräger A, Famili I, Feist AM, Fleming RM (2015) Do genome-scale models need exact solvers or clearer standards? Mol Syst Biol 11(10):831

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dräger A, Palsson BØ (2014) Improving collaboration by standardization efforts in systems biology. Front Bioeng Biotechnol 2:61. https://doi.org/10.3389/fbioe.2014.00061

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bornstein BJ, Keating SM, Jouraku A, Hucka M (2008) LibSBML: an API library for SBML. Bioinformatics 24(6):880–881. https://doi.org/10.1093/bioinformatics/btn051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Godinez I, Haneda T, Raffatellu M, George MD, Paixão TA, Rolán HG, Santos RL, Dandekar S, Tsolis RM, Bäumler AJ (2008) T cells help to amplify inflammatory responses induced by Salmonella enterica serotype Typhimurium in the intestinal mucosa. Infect Immun 76(5):2008–2017. https://doi.org/10.1128/IAI.01691-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36

    Article  CAS  Google Scholar 

  41. Degtyarenko K, De Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburner M (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36(suppl 1):D344–D350

    CAS  PubMed  Google Scholar 

  42. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119. https://doi.org/10.1038/msb4100162

    Article  PubMed  PubMed Central  Google Scholar 

  43. Oberhardt MA, Puchałka J, Martins dos Santos VAP, Papin JA (2011) Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol 7(3):e1001116. https://doi.org/10.1371/journal.pcbi.1001116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thiele I, Jamshidi N, Fleming RMT, Palsson BØ (2009) Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 5(3):e1000312. https://doi.org/10.1371/journal.pcbi.1000312

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zomorrodi AR, Islam MM, Maranas CD (2014) d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 3(4):247–257. https://doi.org/10.1021/sb4001307

    Article  CAS  PubMed  Google Scholar 

  46. Nagrath D, Avila-Elchiver M, Berthiaume F, Tilles AW, Messac A, Yarmush ML (2007) Integrated energy and flux balance based multiobjective framework for large-scale metabolic networks. Ann Biomed Eng 35(6):863–885. https://doi.org/10.1007/s10439-007-9283-0

    Article  PubMed  Google Scholar 

  47. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. https://doi.org/10.1002/bit.10803

    Article  CAS  PubMed  Google Scholar 

  48. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, Bonilla G, Kar A, Leiby N, Mehta P, Marx CJ, Segrè D (2014) Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 7(4):1104–1115. https://doi.org/10.1016/j.celrep.2014.03.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276

    Article  CAS  PubMed  Google Scholar 

  50. Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461. https://doi.org/10.1074/jbc.R800048200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Avinash V. Ghanate for helping us with GEO expression data sets used in the Salmonella-mouse model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Raghunathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Raghunathan, A., Jamshidi, N. (2018). Integrated Host-Pathogen Metabolic Reconstructions. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics