Skip to main content

Analyzing and Designing Cell Factories with OptFlux

  • Protocol
  • First Online:
Metabolic Network Reconstruction and Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1716))

Abstract

OptFlux was launched in 2010 as the first open-source and user-friendly platform containing all the major methods for performing metabolic engineering tasks in silico. Main features included the possibility of performing microbial strain simulations with widely used methods such as Flux Balance Analysis and strain design using Evolutionary Algorithms. Since then, OptFlux suffered a major re-factoring to improve its efficiency and reliability, while many features were added in the form of novel plug-ins, such as the BioVisualizer and the over/under expression plug-ins. The current chapter described the main mathematical formulations of the major methods implemented within OptFlux, also providing a detailed guide on the usage of those functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    https://projects.coin-or.org/Clp

  2. 2.

    https://www.gnu.org/software/glpk/

  3. 3.

    https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

  4. 4.

    https://sourceforge.net/projects/optflux/

  5. 5.

    http://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/metatool5.0/ecoli_networks.html

  6. 6.

    http://bigg1.ucsd.edu

  7. 7.

    https://escher.github.io/

  8. 8.

    http://bigg.ucsd.edu/

  9. 9.

    http://www.genome.jp/kegg/pathway.html

References

  1. Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into {DNA} of Simian Virus 40: circular {SV40} {DNA} molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 69:2904–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lobban PE, Kaiser AD (1973) Enzymatic end-to-end joining of {DNA} molecules. J Mol Biol 78:453–471

    Article  CAS  PubMed  Google Scholar 

  3. Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic press, New York, NY

    Google Scholar 

  4. Bailey J (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  PubMed  Google Scholar 

  5. Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288

    Article  CAS  PubMed  Google Scholar 

  6. Bailey JE, Birnbaum S, Galazzo JL et al (1990) Strategies and challenges in metabolic engineering. Ann N Y Acad Sci 589:1–15

    Article  CAS  PubMed  Google Scholar 

  7. Gavrilescu M, Maria G, Yusuf C (2005) Biotechnology---a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  PubMed  Google Scholar 

  8. Hatti-Kaul R, Rajni H-K, Ulrika T et al (2007) Industrial biotechnology for the production of bio-based chemicals -- a cradle-to-grave perspective. Trends Biotechnol 25:119–124

    Article  CAS  PubMed  Google Scholar 

  9. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  10. Bork P (2005) Is there biological research beyond Systems Biology? A comparative analysis of terms. Mol Syst Biol 1:E1–E2

    Article  Google Scholar 

  11. Schuster SC (2007) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Article  PubMed  Google Scholar 

  12. Papin JA, Tony H, Palsson BO et al (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6:99–111

    Article  CAS  PubMed  Google Scholar 

  13. Samaga R, Regina S, Steffen K (2013) Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun Signal 11:43

    Article  PubMed  PubMed Central  Google Scholar 

  14. Covert MW, Knight EM, Reed JL et al (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96

    Article  CAS  PubMed  Google Scholar 

  15. Reed JL, Iman F, Ines T et al (2006) Towards multidimensional genome annotation. Nat Rev Genet 7:130–141

    Article  CAS  PubMed  Google Scholar 

  16. Fong SS, Palsson BØ (2004) Metabolic gene--deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36:1056–1058

    Article  CAS  PubMed  Google Scholar 

  17. Papin JA, Joerg S, Price ND et al (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400–405

    Article  CAS  PubMed  Google Scholar 

  18. Rocha I, Förster J, Nielsen J (2008) Design and application of genome-scale reconstructed metabolic models. Methods Mol Biol 416:409–431

    Article  CAS  PubMed  Google Scholar 

  19. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hamilton JJ, Reed JL (2014) Software platforms to facilitate reconstructing genome-scale metabolic networks. Environ Microbiol 16:49–59

    Article  PubMed  Google Scholar 

  21. Notebaart RA, van Enckevort FHJ, Francke C et al (2006) Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7:296

    Article  PubMed  PubMed Central  Google Scholar 

  22. Agren R, Liu L, Shoaie S et al (2013) The {RAVEN} toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9:e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henry CS, DeJongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  PubMed  Google Scholar 

  24. Dias O, Rocha M, Ferreira EC et al (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res 43:3899–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smallbone K, Kieran S, Messiha HL et al (2013) A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett 587:2832–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smallbone K, Kieran S, Evangelos S et al (2010) Towards a genome-scale kinetic model of cellular metabolism. BMC Syst Biol 4:6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bordbar A, Monk JM, King ZA et al (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120

    Article  CAS  PubMed  Google Scholar 

  28. Gombert AK, Jens N (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11:180–186

    Article  CAS  PubMed  Google Scholar 

  29. Edwards JS, Palsson BO (1999) Systems properties of the haemophilus influenzaeRd metabolic genotype. J Biol Chem 274:17410–17416

    Article  CAS  PubMed  Google Scholar 

  30. Monk J, Nogales J, Palsson BO (2014) Optimizing genome-scale network reconstructions. Nat Biotechnol 32:447–452

    Article  CAS  PubMed  Google Scholar 

  31. Bailey JE (2001) Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab Eng 3:111–114

    Article  CAS  PubMed  Google Scholar 

  32. Rocha I, Maia P, Evangelista P et al (2010) {OptFlux}: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  PubMed  PubMed Central  Google Scholar 

  33. Glez-Peña D, Reboiro-Jato M, Maia P et al (2010) {AIBench}: a rapid application development framework for translational research in biomedicine. Comput Methods Programs Biomed 98:191–203

    Article  PubMed  Google Scholar 

  34. Schulze KL, Lipe RS (1964) Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture. Arch Mikrobiol 48:1–20

    Article  CAS  PubMed  Google Scholar 

  35. Bowen JH (1968) Basic principles and calculations in chemical engineering. Chem Eng Sci 23:191

    Article  Google Scholar 

  36. Reed JL, Vo TD, Schilling CH, Palsson BO (2013) An expanded genome-scale model of Escherichia coli K-12 (i JR904 GSM/GPR). Genome Biol 4(9):R54

    Article  Google Scholar 

  37. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language ({SBML)}: a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  38. Bornstein BJ, Keating SM, Jouraku A et al (2008) {LibSBML}: an {API} library for {SBML}. Bioinformatics 24:880–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22:1930–1931

    Article  Google Scholar 

  40. Funahashi A, Morohashi M, Kitano H et al (2003) {CellDesigner}: a process diagram editor for gene-regulatory and biochemical networks. BioSilico 1:159–162

    Article  Google Scholar 

  41. Funahashi A, Matsuoka Y, Jouraku A et al (2008) {CellDesigner} 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96:1254–1265

    Article  Google Scholar 

  42. Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noronha A, Vilaça P, Rocha M (2014) An integrated network visualization framework towards metabolic engineering applications. BMC Bioinformatics 15:420

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21:1129–1164

    Article  Google Scholar 

  45. Le Novere N, Hucka M, Mi H et al (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741

    Article  PubMed  Google Scholar 

  46. Schellenberger J, Park JO, Conrad TM et al (2010) {BiGG}: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  PubMed  PubMed Central  Google Scholar 

  47. King ZA, Dräger A, Ebrahim A et al (2015) Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol 11:e1004321

    Article  PubMed  PubMed Central  Google Scholar 

  48. King ZA, Lu J, Dräger A et al (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522

    Article  CAS  PubMed  Google Scholar 

  49. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994

    Article  CAS  Google Scholar 

  50. Papoutsakis ET (1984) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 26:174–187

    Article  CAS  PubMed  Google Scholar 

  51. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ponce de León M, Cancela H, Acerenza L (2008) A strategy to calculate the patterns of nutrient consumption by microorganisms applying a two-level optimisation principle to reconstructed metabolic networks. J Biol Phys 34:73–90

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lewis NE, Hixson KK, Conrad TM et al (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390

    Article  PubMed  PubMed Central  Google Scholar 

  56. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

    Article  PubMed  PubMed Central  Google Scholar 

  57. Snitkin ES, Dudley AM, Janse DM et al (2008) Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol 9:R140

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A 102:7695–7700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the {COBRA} Toolbox. Nat Protoc 2:727–738

    Article  CAS  PubMed  Google Scholar 

  60. Wintermute EH, Lieberman TD, Silver PA (2013) An objective function exploiting suboptimal solutions in metabolic networks. BMC Syst Biol 7:98

    Article  PubMed  PubMed Central  Google Scholar 

  61. Park JH, Lee KH, Kim TY et al (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alper H, Jin Y-S, Moxley JF et al (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  PubMed  Google Scholar 

  63. Jung YK, Kim TY, Park SJ et al (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Article  CAS  PubMed  Google Scholar 

  64. Brochado AR, Andrejev S, Maranas CD et al (2012) Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS Comput Biol 8:e1002758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  PubMed  Google Scholar 

  66. Maia P, Rocha M, Rocha I (2016) In silico {constraint-based} strain optimization methods: the quest for optimal cell factories. Microbiol Mol Biol Rev 80:45–67

    Article  PubMed  Google Scholar 

  67. Ignizio JP (1994) Linear programming. Pearson College Division, London

    Google Scholar 

  68. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  CAS  PubMed  Google Scholar 

  69. Patil KR, Rocha I, Förster J et al (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6:308

    Article  PubMed  PubMed Central  Google Scholar 

  70. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. MIT Press, Cambridge, MA

    Google Scholar 

  71. Rocha M, Maia P, Mendes R et al (2008) Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9:499

    Article  PubMed  PubMed Central  Google Scholar 

  72. Maia P, Rocha I, Ferreira EC et al (2008) Evaluating evolutionary multiobjective algorithms for the in silico optimization of mutant strains. In: 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008

    Google Scholar 

  73. Maia P, Rocha I, Rocha M (2013) An integrated framework for strain optimization. In: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, pp 198–205

    Chapter  Google Scholar 

  74. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli {K-12} using {PCR} products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Frazier CL, San Filippo J, Lambowitz AM et al (2003) Genetic manipulation of Lactococcus lactis by using targeted group {II} introns: generation of stable insertions without selection. Appl Environ Microbiol 69:1121–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gonçalves E, Pereira R, Rocha I et al (2012) Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression. J Comput Biol 19:102–114

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vilaça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vilaça, P., Maia, P., Giesteira, H., Rocha, I., Rocha, M. (2018). Analyzing and Designing Cell Factories with OptFlux. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics