Skip to main content
Log in

A Strategy to Calculate the Patterns of Nutrient Consumption by Microorganisms Applying a Two-Level Optimisation Principle to Reconstructed Metabolic Networks

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Bacterial responses to environmental changes rely on a complex network of biochemical reactions. The properties of the metabolic network determining these responses can be divided into two groups: the stoichiometric properties, given by the stoichiometry matrix, and the kinetic/thermodynamic properties, given by the rate equations of the reaction steps. The stoichiometry matrix represents the maximal metabolic capabilities of the organism, and the regulatory mechanisms based on the rate laws could be considered as being responsible for the administration of these capabilities. Post-genomic reconstruction of metabolic networks provides us with the stoichiometry matrix of particular strains of microorganisms, but the kinetic aspects of in vivo rate laws are still largely unknown. Therefore, the validity of predictions of cellular responses requiring detailed knowledge of the rate equations is difficult to assert. In this paper, we show that by applying optimisation criteria to the core stoichiometric network of the metabolism of Escherichia coli, and including information about reversibility/irreversibility only of the reaction steps, it is possible to calculate bacterial responses to growth media with different amounts of glucose and galactose. The target was the minimisation of the number of active reactions (subject to attaining a growth rate higher than a lower limit) and subsequent maximisation of the growth rate (subject to the number of active reactions being equal to the minimum previously calculated). Using this two-level target, we were able to obtain by calculation four fundamental behaviours found experimentally: inhibition of respiration at high glucose concentrations in aerobic conditions, turning on of respiration when glucose decreases, induction of galactose utilisation when the system is depleted of glucose and simultaneous use of glucose and galactose as carbon sources when both sugars are present in low concentrations. Preliminary results of the coarse pattern of sugar utilisation were also obtained with a genome-scale E. coli reconstructed network, yielding similar qualitative results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Monod, J.: The phenomenon of enzymatic adaptation. Growth Symposium XI, 223–289 (1947)

    Google Scholar 

  2. Egli, T.: The ecological and physiological significance of the growth of heterotrophic micro-organisms with mixtures of substrates. Adv. Microb. Ecol. 14, 305–386 (1995)

    Google Scholar 

  3. Kovarova-Kovar, K., Egli, T.: Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998)

    Google Scholar 

  4. Lendenmann, U., Egli, T.: Kinetic models for the growth of Escherichia coli with mixtures of sugars under carbon-limited conditions. Biotechnol Bioeng. 59, 99–107 (1998)

    Article  Google Scholar 

  5. Kacser, H., Beeby, R.: Evolution of catalytic proteins or on the origin of enzyme species by means of natural selection. J. Mol. Evol. 20, 38–51 (1984)

    Article  Google Scholar 

  6. Ortega, F., Acerenza, L.: Optimal metabolic control design. J. Theor. Biol. 191, 439–449 (1998)

    Article  Google Scholar 

  7. Edwards, J.S., Palsson, B.O.: The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. U. S. A. 97, 5528–5533 (2000)

    Article  ADS  Google Scholar 

  8. Palsson, B.O.: Systems biology. Properties of reconstructed networks. Cambridge University Press, New York (2006)

    Google Scholar 

  9. Beasley, J.E., Planes, F.J.: Recovering metabolic pathways via optimization. Bioinformatics. 23, 92–98 (2007)

    Article  Google Scholar 

  10. Burgard, A.P., Vaidyaraman, S., Maranas, C.D.: Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol. Prog. 17, 791–797 (2001)

    Article  Google Scholar 

  11. Cascante, M., Llorens, M., Meléndez-Hevia, E., Puigjaner, J., Montero, F., Marti, E.: The metabolic productivity of the cell factory. J. Theor. Biol. 182, 317–325 (1996)

    Article  Google Scholar 

  12. Henrich, R., Schuster, S., Holzhütter, H.G.: Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21 (1991)

    Article  Google Scholar 

  13. Holzhütter, H.-G.: The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922 (2004)

    Article  Google Scholar 

  14. Meléndez-Hevia, E., Waddell, T.G., Montero, F.: Optimization of metabolism: the evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle. J. Theor. Biol. 166, 201–220 (1994)

    Article  Google Scholar 

  15. Schuetz, R., Kuepfer, L., Sauer, U.: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007)

    Article  Google Scholar 

  16. Cooper, V.S., Lenski, R.E.: The population genetics of ecological specialization in evolving Escherichia coli populations. Nature. 407, 736–739 (2000)

    Article  ADS  Google Scholar 

  17. Acerenza, L., Graña, M.: On the origins of a crowded cytoplasm. J. Mol. Evol. 63, 583–590 (2006)

    Article  Google Scholar 

  18. Graña, M., Acerenza, L.: A model combining cell physiology and population genetics to explain the evolution of Escherichia coli in laboratory experiments. BMC Evol. Biol. 1, 12 (2001)

    Article  Google Scholar 

  19. Acerenza, L., Kacser, H.: Enzyme kinetics and metabolic control. A method to test and quantify the effect of enzymic properties on metabolic variables. Biochem. J. 269, 697–707 (1990)

    Google Scholar 

  20. Kacser, H., Burns, J.A.: The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973)

    Google Scholar 

  21. Levine, E., Hwa, T.: Stochastic fluctuations in metabolic pathways. Proc. Natl. Acad. Sci. U. S. A. 104, 9224–9229 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Crabtree, H.G.: Observations on the carbohydrate metabolism of tumours. Biochem. J. 23, 536–545 (1929)

    Google Scholar 

  23. Wolfe, A.J.: The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005)

    Article  Google Scholar 

  24. Ciechanover, A.: The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochem. Soc. Trans. 31, 474–481 (2003)

    Article  Google Scholar 

  25. Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D., Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.O.: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology 3, 121 (2007)

    Article  Google Scholar 

  26. DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 278, 680–686 (1997)

    Article  ADS  Google Scholar 

  27. van den Bogaard, P.T., Hols, P., Kuipers, O.P., Kleerebezem, M., de Vos, W.M.: Sugar utilisation and conservation of the gal-lac gene cluster in Streptococcus thermophilus. Syst. Appl. Microbiol. 27, 10–17 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical support in preparing preliminary computational tools from Pablo Berger. LA is grateful for funding from Comisión Sectorial de Investigación Científica de la Universidad de la República (CSIC, Montevideo). HC and LA acknowledge the support from Programa de Desarrollo de las Ciencias Básicas (PEDECIBA, Montevideo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Acerenza.

Appendices

Appendix 1

1.1 A. Reactions

Abbreviation

Official reaction name

Equation

ACKr

Acetate kinase

[c] : ac + ATP ⇔ actp + ADP

ACONT

Aconitase

[c] : cit ⇔ icit

ACt2r

Acetate reversible transport via proton symport

ac[e] + h[e] ⇔ ac [c] + h[c]

ADHEr

Acetaldehyde dehydrogenase

[c] : accoa + (2)h + (2)NADH ⇔ coa + EtOH + (2)NAD

ADK1

Adenylate kinase

[c] : AMP + ATP ⇔ (2)ADP

AKGDH

2-Oxoglutarate dehydrogenase

[c] : akg + coa + NAD → CO2 + NADH + succoa

AKGt2r

2-Oxoglutarate reversible transport via symport

akg[e] + h[e] ⇔ akg[c] + h[c]

ATPM

ATP maintenance requirement

[c] : ATP + H2O → ADP + h + pi

ATPS4r

ATP synthase (four protons for one ATP)

adp[c] + (4)h[e] + pi[c] ⇔ ATP[c] + (3) h[c] + H2O[c]

CO2t

CO2 transporter via diffusion

CO2[e] ⇔ CO2[c]

CS

Citrate synthase

[c] : accoa + H2O + oaa → cit + coa + h

CYTBD

Cytochrome oxidase bd (ubiquinol-8: 2 protons)

(2) h[c] + (0.5) O2[c] + q8h2[c] → (2)h[e] + H2O[c] + q8[c]

d-LACt2

d-lactate transport via proton symport

h[e] + lac - D[e] ⇔ h[c] + lac − D[c]

ENO

Enolase

[c] : 2pg ⇔ H2O + pep

ETOHt2r

Ethanol reversible transport via proton symport

ETOH[e] + h[e] ⇔ ETOH[c] + h[c]

EX_ac(e)

Acetate exchange

[e] : ac ⇔

EX_akg(e)

2-Oxoglutarate exchange

[e] : akg ⇔

EX_co2(e)

CO2 exchange

[e] : CO2

EX_etoh(e)

Ethanol exchange

[e] : ETOH ⇔

EX_for(e)

Formate exchange

[e] : for ⇔

EX_fum(e)

Fumarate exchange

[e] : fum ⇔

EX_glc(e)

d-Glucose exchange

[e] : glc − D ⇔

EX_h(e)

H+ exchange

[e] : h ⇔

EX_h2o(e)

H2O exchange

[e] : H2O ⇔

EX_lac-D(e)

d-lactate exchange

[e] : lac − D ⇔

EX_o2(e)

O2 exchange

[e] : O2

EX_pi(e)

Phosphate exchange

[e] : pi ⇔

EX_pyr(e)

Pyruvate exchange

[e] : pyr ⇔

EX_succ(e)

Succinate exchange

[e] : succ ⇔

FBA

Fructose-bisphosphate aldolase

[c] : fdp ⇔ dhap + g3p

FBP

Fructose-bisphosphatase

[e] : fdp + H2O → f 6p + pi

FORt

Formate transport via diffusion

for[e] ⇔ for[c]

FRD

Fumarate reductase

[c] : fadh2 + fum → fad + succ

FUM

Fumarase

[c] : fum + H2O ⇔ mal − L

FUMt2_2

Fumarate transport via proton symport (2 H)

fum[e] + (2)h[e] → fum[c] + (2)h[c]

G6PDH2r

Glucose 6-phosphate dehydrogenase

[c] : g6p + NADP ⇔ 6pgl + h + NADPH

GALKr

Galactokinase

[c] : ATP + gal ← ADP + gal1p + h

GALabc

d-Galactose transport via ABC system

ATP[c] + gal[e] + H2O[c] → ADP[c] + gal[c] + h[c] + pi[c]

GALt2

d-Galactose transport in via proton symport

gal[e] + h[e] → gal[c] + h[c]

GAPD

Glyceraldehyde-3-phosphate dehydrogenase

[c] : g3p + NAD + pi ⇔ 13 dpg + h + NADH

GLCpts

d-Glucose transport via PEP:Pyr PTS

glc − D[e] + pep[c] → g6p[c] + pyr[c]

GND

Phosphogluconate dehydrogenase

[c] : 6pgc + NADP → co2 + NADPH + ru5p − D

H2Ot

H2O transport via diffusion

H2O[e] ⇔ H2O[c]

ICDHyr

Isocitrate dehydrogenase (NADP)

[c] : icit + NADP ⇔ akg + CO2 + NADPH

ICL

Isocitrate lyase

[c] : icit → glx + succ

LDH_D

d-Lactate dehydrogenase

[c] : lac − D + NAD ⇔ h + NADH + pyr

MALS

Malate synthase

[c] : accoa + glx + H2O → coa + h + mal − L

MDH

Malate dehydrogenase

[c] : mal − L + NAD ⇔ h + NADH + oaa

ME1

Malic enzyme (NAD)

[c] : mal − L + NAD → CO2 + NADH + pyr

ME2

Malic enzyme (NADP)

[c] : mal − L + NADP → CO2 + NADPH + pyr

NADH11

NADH dehydrogenase (ubiquinone-8 & 2 protons)

(3)h[c] + NADH[c] + q8[c] → (2)h[e] + NAD[c] + q8h2[c]

NADTRHD

NAD transhydrogenase

[c] : NAD + NADPH → NADH + NADP

O2t

O2 transport (diffusion)

O2[e] ⇔ O2[c]

PDH

Pyruvate dehydrogenase

[c] : coa + NAD + pyr → accoa + CO2 + NADH

PFK

Phosphofructokinase

[c] : ATP + f6p → ADP + fdp + h

PFL

Pyruvate formate lyase

[c] : coa + pyr → accoa + for

PGI

Glucose-6-phosphate isomerase

[c] : g6p ⇔ f6p

PGK

Phosphoglycerate kinase

[c] : 3pg + ATP ⇔ 13dpg + ADP

PGL

6-Phosphogluconolactonase

[c] : 6pgl + H2O → 6pgc + h

PGM

Phosphoglycerate mutase

[c] : 2pg ⇔ 3pg

PGMT

Phosphoglucomutase

[c] : g1p ⇔ g6p

Pit

Inorganic phosphate exchange, diffusion

pi[c] ⇔ pi[e]

PPC

Phosphoenolpyruvate carboxylase

[c] : CO2 + H2O + pep → h + oaa + pi

PPCK

Phosphoenolpyruvate carboxykinase

[c] : ATP + oaa → ADP + CO2 + pep

PPS

Phosphoenolpyruvate synthase

[c] : ATP + H2O + pyr → AMP + (2)h + pep + pi

PTAr

Phosphotransacetylase

[c] : accoa + pi ⇔ actp + coa

PYK

Pyruvate kinase

[c] : ADP + h + pep → ATP + pyr

PYRt2r

Pyruvate reversible transport via proton symport

h[e] + pyr[e] ⇔ h[c] + pyr[c]

RPE

Ribulose 5-phosphate 3-epimerase

[c] : ru5p − D ⇔ xu5p − D

RPI

Ribose-5-phosphate isomerase

[c] : r5p ⇔ ru5p − D

SUCCt2_2

Succinate transport via proton symport (2 H)

(2)h[e] + succ[e] →(2)h[c] + succ[c]

SUCCt2b

Succinate efflux via proton symport

h[c] + succ[c] → h[e] + succ[e]

SUCD1i

Succinate dehydrogenase

[c] : fad + succ → fadh2 + fum

SUCD4

Succinate dehyrdogenase

[c] : fadh2 + q8 ⇔ fad + q8h2

SUCOAS

Succinyl-CoA synthetase (ADP-forming)

[c] : ATP + coa + succ ⇔ ADP + pi + succoa

TALA

Transaldolase

[c] : g3p + s7p ⇔ e4p + 6p

THD2

NAD(P) transhydrogenase

(2)h[e] + NADH[c] + NADP[c] → (2)h[c] + NAD[c] + NADPH[c]

TKT1

Transketolase

[c] : r5p + xu5p − D ⇔ g3p + s7p

TKT2

Transketolase

[c] : e4p + xu5p − D ⇔ f6p + g3p

TPI

Triose-phosphate isomerase

[c] : dhap ⇔ g3p

UDPG4E

UDPglucose 4-epimerase

[c] : udpg ⇔ udpgal

UGLT

UDPglucose-hexose-1-phosphate uridylyltransferase

[c] : gal1p + udpg ⇔ g1p + udpgal

Biomass production

0.2 G6P + 0.071 F6P + 0.898 R5P + 0.361 E4P + 0.129 T3P + 1.4996 3PG + 0.519 PEP + 2.833 PYR + 3.748 AcCoA + 1.787 OAA + 1.079 alfa-KG + 42.703 ATP + 18.22 NADPH ➔ 3.748 CoA + 18.22 NADP + 42.703 ADP + 42.703 Pi + BIOMASS

1.2 B. Upper and Lower Bounds of the Fluxes

  1. 1)

    Thirty-six reversible reactions: ACKr, ACONT, ACt2r, ADHEr, ADK1, AKGt2r, ATPS4r, CO2t, D-LACt2, ENO, ETOHt2r, FBA, FORt, FUM, G6PDH2r, GAPD, H2Ot, ICDHyr, LDH_D, MDH, PGI, PGK, PGM, PIt, PTAr, PYRt2r, RPE, RPI, SUCD4, SUCOAS, TALA, TKT1, TKT2, TPI, GALKr and PGMT are bounded by −1000 and 1000.

  2. 2)

    Twenty-seven irreversible reactions: AKGDH, CS, CYTBD, FBP, FRD, FUMt2_2, GND, ICL, MALS, ME1, ME2, NADH11, NADTRHD, PDH, PFK, PFL, PGL, PPC, PPCK, PPS, PYK, SUCCt2_2, SUCCt2b, SUCD1i, THD2, UDPG4E and UGLT are bounded by 0 and 1000.

  3. 3)

    O2t (Oxygen transport) is bounded by −1000 and 10 (reversible).

  4. 4)

    ATPM (ATP maintenance requirement) is bounded by 7.6 and 1000 (irreversible).

  5. 5)

    GROWTH (biomass production) is bounded by 0.1 and 1000 (irreversible).

  6. 6)

    GALabc (d-galactose transport via ABC system) and GALt2 (d-galactose transport in via proton symport): their sum is bounded by 0 and 20 (irreversible).

  7. 7)

    GLCpts (d-glucose transport via PEP:Pyr PTS) is bounded by 0 and 20 (irreversible).

Appendix 2: The Model

Let J be the set of all the reactions in the stoichiometry matrix N (including the 69 internal and the 15 external reactions). We then define two subsets of J: J int including the 69 internal reactions and J ext including the 15 external reactions.

Master optimisation problem

Objective function:

$$Z = {Max} \quad v_{growth} $$

Subject to:

$$\begin{array}{*{20}l} {{\mathbf{N}} \cdot {\mathbf{\nu }} = o} \hfill \\ {\begin{array}{*{20}l} {y_j \cdot \nu _j^1 \leqslant \nu _j \leqslant y_j \cdot \nu _j^{\text{u}} } \hfill&{\forall \;j \in J_{{\text{int}}} } \hfill \\ {\nu _j^1 \leqslant \nu _j \leqslant \nu _j^{\text{u}} } \hfill&{\forall \;j \in J_{{\text{ext}}} } \hfill \\ \end{array} } \hfill \\ {\sum\limits_{j \in J_{{\text{int}}} } {y_j = Z*} } \hfill \\ {y_j \in \left\{ {0,1} \right\}} \hfill \\ {\nu _j \in \Re } \hfill \\ \end{array} $$

where Z* is given by the lower level optimisation problem:

$$Z^* = {Min} \;\sum\limits_{j \in J_{{int} } } {y_j } $$

Subject to:

$$\begin{array}{*{20}l} {{\mathbf{N}} \cdot {\mathbf{\nu }} = o} \hfill \\ {\begin{array}{*{20}l} {y_j \cdot \nu _j^1 \leqslant \nu _j \leqslant y_j \cdot \nu _j^{\text{u}} } \hfill&{\forall \;j \in J_{{\text{int}}} } \hfill \\ {\nu _j^1 \leqslant \nu _j \leqslant \nu _j^{\text{u}} } \hfill&{\forall \;j \in J_{{\text{ext}}} } \hfill \\ \end{array} } \hfill \\ {\nu _{{\text{growth}}}^{\text{1}} \leqslant \nu _{{\text{growth}}}^{\text{u}} } \hfill \\ {y_j \in \left\{ {0,1} \right\}} \hfill \\ {\nu _j \in \Re } \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce de León, M., Cancela, H. & Acerenza, L. A Strategy to Calculate the Patterns of Nutrient Consumption by Microorganisms Applying a Two-Level Optimisation Principle to Reconstructed Metabolic Networks. J Biol Phys 34, 73–90 (2008). https://doi.org/10.1007/s10867-008-9067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9067-2

Keywords

Navigation