Skip to main content

Testing Departure from Hardy-Weinberg Proportions

  • Protocol
  • First Online:
Statistical Human Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1666))

Abstract

The Hardy-Weinberg principle, one of the most important principles in population genetics, was originally developed for the study of allele frequency changes in a population over generations. It is now, however, widely used in studies of human diseases to detect inbreeding, population stratification, and genotyping errors. For assessment of deviation from Hardy-Weinberg proportions in data, the most popular approaches include the asymptotic Pearson’s chi-squared goodness-of-fit test and the exact test. Pearson’s chi-squared goodness-of-fit test is simple and straightforward, but is very sensitive to a small sample size or rare allele frequency. The exact test of Hardy-Weinberg proportions is preferable in these situations. The exact test can be performed through complete enumeration of heterozygote genotypes or on the basis of the Markov chain Monte Carlo procedure. In this chapter, we describe the Hardy-Weinberg principle and the commonly used Hardy-Weinberg proportion tests and their applications, and we demonstrate how the chi-squared test and exact test of Hardy-Weinberg proportions can be performed step-by-step using the popular software programs SAS, R, and PLINK, which have been widely used in genetic association studies, along with numerical examples. We also discuss approaches for testing Hardy-Weinberg proportions in case–control study designs that are better than traditional approaches for testing Hardy-Weinberg proportions in controls only. Finally, we note that deviation from the Hardy-Weinberg proportions in affected individuals can provide evidence for an association between genetic variants and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Castle WE (1903) The laws of Galton and Mendel and some laws governing race improvement by selection. Proc Amer Acad Arts Sci 35:233–242

    Google Scholar 

  2. Hardy GH (1908) Mendelian proportions in a mixed population. Science 28(706):49–50

    Article  CAS  PubMed  Google Scholar 

  3. Weinberg W (1908) On the demonstration of heredity in man. In: Boyer SH (ed) Papers on human genetics. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  4. Crow JF (1988) Eighty years ago: the beginnings of population genetics. Genetics 119(3):473–476

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland, MA

    Google Scholar 

  6. Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72–84

    Article  PubMed  Google Scholar 

  7. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  8. Price GR (1971) Extension of the Hardy-Weinberg law to assortative mating. Ann Hum Genet 34(4):455–458

    Article  CAS  PubMed  Google Scholar 

  9. Shockley W (1973) Deviations from Hardy-Weinberg frequencies caused by assortative mating in hybrid populations. Proc Natl Acad Sci U S A 70(3):732–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Templeton A (2006) Population genetics and microevolutionary theory. Wiley, Hoboken, NJ

    Book  Google Scholar 

  11. Voight BF, Pritchard JK (2005) Confounding from cryptic relatedness in case-control association studies. PLoS Genet 1(3):e32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinberg CR, Morris RW (2003) Invited commentary: testing for Hardy-Weinberg disequilibrium using a genome single-nucleotide polymorphism scan based on cases only. Am J Epidemiol 158(5):401–403

    Article  PubMed  Google Scholar 

  13. Deng HW, Chen WM, Recker RR (2000) QTL fine mapping by measuring and testing for Hardy-Weinberg and linkage disequilibrium at a series of linked marker loci in extreme samples of populations. Am J Hum Genet 66(3):1027–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng HW, Chen WM, Recker RR (2001) Population admixture: detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits. Genetics 157(2):885–897

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Grover VK, Cole DE, Hamilton DC (2010) Attributing Hardy-Weinberg disequilibrium to population stratification and genetic association in case-control studies. Ann Hum Genet 74(1):77–87

    Article  PubMed  Google Scholar 

  16. Ryckman K, Williams SM (2008) Calculation and use of the Hardy-Weinberg model in association studies. Curr Protoc Hum Genet Chapter 1:Unit 1.18

    Google Scholar 

  17. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76(5):887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Attia J, Thakkinstian A, McElduff P, Milne E, Dawson S, Scott RJ, Klerk N, Armstrong B, Thompson J (2010) Detecting genotyping error using measures of degree of Hardy-Weinberg disequilibrium. Stat Appl Genet Mol Biol 9 (1):Article

    Google Scholar 

  19. Gomes I, Collins A, Lonjou C, Thomas NS, Wilkinson J, Watson M, Morton N (1999) Hardy-Weinberg quality control. Ann Hum Genet 63(Pt 6):535–538

    Article  CAS  PubMed  Google Scholar 

  20. Graffelman J, Camarena JM (2008) Graphical tests for Hardy-Weinberg equilibrium based on the ternary plot. Hum Hered 65(2):77–84

    Article  PubMed  Google Scholar 

  21. Hosking L, Lumsden S, Lewis K, Yeo A, McCarthy L, Bansal A, Riley J, Purvis I, CF X (2004) Detection of genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet 12(5):395–399

    Article  CAS  PubMed  Google Scholar 

  22. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, Boehm F, Caporaso NE, Cornelis MC, Edenberg HJ, Gabriel SB, Harris EL, Hu FB, Jacobs KB, Kraft P, Landi MT, Lumley T, Manolio TA, McHugh C, Painter I, Paschall J, Rice JP, Rice KM, Zheng X, Weir BS (2010) Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 4(6):591–602

    Article  Google Scholar 

  23. Li M, Li C (2008) Assessing departure from Hardy-Weinberg equilibrium in the presence of disease association. Genet Epidemiol 32(7):589–599

    Article  PubMed  Google Scholar 

  24. Schaid DJ, Batzler AJ, Jenkins GD, Hildebrandt MA (2006) Exact tests of Hardy-Weinberg equilibrium and homogeneity of disequilibrium across strata. Am J Hum Genet 79(6):1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tapper W, Collins A, Gibson J, Maniatis N, Ennis S, Morton NE (2005) A map of the human genome in linkage disequilibrium units. Proc Natl Acad Sci U S A 102(33):11835–11839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Shete S (2010) Using both cases and controls for testing Hardy-Weinberg proportions in a genetic association study. Hum Hered 69(3):212–218

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weale ME (2010) Quality control for genome-wide association studies. Methods Mol Biol 628:341–372

    Article  CAS  PubMed  Google Scholar 

  28. Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76(6):967–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6(11):847–859

    Article  CAS  PubMed  Google Scholar 

  30. Akey JM, Zhang K, Xiong M, Doris P, Jin L (2001) The effect that genotyping errors have on the robustness of common linkage-disequilibrium measures. Am J Hum Genet 68(6):1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weiss ST, Silverman EK, Palmer LJ (2001) Case-control association studies in pharmacogenetics. Pharmacogenomics J 1(3):157–158

    Article  CAS  PubMed  Google Scholar 

  32. Xu J, Turner A, Little J, Bleecker ER, Meyers DA (2002) Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error? Hum Genet 111(6):573–574

    Article  PubMed  Google Scholar 

  33. Wang J, Shete S (2008) A test for genetic association that incorporates information about deviation from Hardy-Weinberg proportions in cases. Am J Hum Genet 83(1):53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cox DG, Kraft P (2006) Quantification of the power of Hardy-Weinberg equilibrium testing to detect genotyping error. Hum Hered 61(1):10–14

    Article  PubMed  Google Scholar 

  35. Fardo DW, Becker KD, Bertram L, Tanzi RE, Lange C (2009) Recovering unused information in genome-wide association studies: the benefit of analyzing SNPs out of Hardy-Weinberg equilibrium. Eur J Hum Genet 17(12):1676–1682

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leal SM (2005) Detection of genotyping errors and pseudo-SNPs via deviations from Hardy-Weinberg equilibrium. Genet Epidemiol 29(3):204–214

    Article  PubMed  PubMed Central  Google Scholar 

  37. Teo YY, Fry AE, Clark TG, Tai ES, Seielstad M (2007) On the usage of HWE for identifying genotyping errors. Ann Hum Genet 71(Pt 5):701–703

    Article  CAS  PubMed  Google Scholar 

  38. Zou GY, Donner A (2006) The merits of testing Hardy-Weinberg equilibrium in the analysis of unmatched case-control data: a cautionary note. Ann Hum Genet 70(Pt 6):923–933

    PubMed  CAS  Google Scholar 

  39. Salanti G, Amountza G, Ntzani EE, Ioannidis JP (2005) Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet 13(7):840–848

    Article  CAS  PubMed  Google Scholar 

  40. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13(4):399–408

    Article  CAS  PubMed  Google Scholar 

  41. Jiang R, Dong J, Wang D, Sun FZ (2001) Fine-scale mapping using Hardy-Weinberg disequilibrium. Ann Hum Genet 65(Pt 2):207–219

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen DM, Ehm MG, Weir BS (1998) Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet 63(5):1531–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee WC (2003) Searching for disease-susceptibility loci by testing for Hardy-Weinberg disequilibrium in a gene bank of affected individuals. Am J Epidemiol 158(5):397–400

    Article  PubMed  Google Scholar 

  44. Song K, Elston RC (2006) A powerful method of combining measures of association and Hardy-Weinberg disequilibrium for fine-mapping in case-control studies. Stat Med 25(1):105–126

    Article  PubMed  Google Scholar 

  45. Won S, Elston RC (2008) The power of independent types of genetic information to detect association in a case-control study design. Genet Epidemiol 32(8):731–756

    Article  PubMed  Google Scholar 

  46. Hoh J, Wille A, Ott J (2001) Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res 11(12):2115–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yates F (1934) Contingency tables involving small numbers and the X2 test. J Roy Stat Soc Suppl 1:217–235

    Article  Google Scholar 

  48. Fisher RA (1935) The logic of inductive inference. J Roy Stat Soc 98:39–54

    Article  Google Scholar 

  49. Emigh T (1954) A comparison of tests for Hardy-Weinberg equilibrium. Biometrics 36:627–642

    Article  Google Scholar 

  50. Haldane JBS (1954) An exact test for randomness of mating. J Genet 52:631–635

    Article  Google Scholar 

  51. Engels WR (2009) Exact tests for Hardy-Weinberg proportions. Genetics 183(4):1431–1441

    Article  PubMed  PubMed Central  Google Scholar 

  52. Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94

    Article  Google Scholar 

  53. Louis EJ, Dempster ER (1987) An exact test for Hardy-Weinberg and multiple alleles. Biometrics 43(4):805–811

    Article  CAS  PubMed  Google Scholar 

  54. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48(2):361–372

    Article  CAS  PubMed  Google Scholar 

  55. Aoki S (2003) Network algorithm for the exact test of Hardy-Weinberg proportion for multiple alleles. Biom J 45(4):471–490

    Article  Google Scholar 

  56. Maurer HP, Melchinger AE, Frisch M (2007) An incomplete enumeration algorithm for an exact test of Hardy-Weinberg proportions with multiple alleles. Theor Appl Genet 115(3):393–398

    Article  CAS  PubMed  Google Scholar 

  57. Huber M, Chen Y, Dinwoodie I, Dobra A, Nicholas M (2006) Monte Carlo algorithms for Hardy-Weinberg proportions. Biometrics 62(1):49–53

    Article  PubMed  Google Scholar 

  58. Yuan A, Bonney GE (2003) Exact test of Hardy-Weinberg equilibrium by Markov chain Monte Carlo. Math Med Biol 20(4):327–340

    Article  PubMed  Google Scholar 

  59. Lazzeroni LC, Lange K (1997) Markov chains for Monte Carlo tests of genetic equilibrium in multidimensional contingency tables. Ann Stat 25(1):138–168

    Article  Google Scholar 

  60. Hernandez JL, Weir BS (1989) A disequilibrium coefficient approach to Hardy-Weinberg testing. Biometrics 45(1):53–70

    Article  CAS  PubMed  Google Scholar 

  61. Maiste PJ, Weir BS (2004) Optimal testing strategies for large, sparse multinomial models. Comput Stat Data An 46(3):605–620

    Article  Google Scholar 

  62. Montoya-Delgado LE, Irony TZ, de B Pereira CA, Whittle MR (2001) An unconditional exact test for the Hardy-Weinberg equilibrium law: sample-space ordering using the Bayes factor. Genetics 158(2):875–883

    Google Scholar 

  63. Shoemaker J, Painter I, Weir BS (1998) A Bayesian characterization of Hardy-Weinberg disequilibrium. Genetics 149(4):2079–2088

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Wakefield J (2010) Bayesian methods for examining Hardy-Weinberg equilibrium. Biometrics 66(1):257–265

    Article  PubMed  Google Scholar 

  65. Wellek S, Goddard KA, Ziegler A (2010) A confidence-limit-based approach to the assessment of Hardy-Weinberg equilibrium. Biom J 52(2):253–270

    PubMed  Google Scholar 

  66. Goddard KA, Ziegler A, Wellek S (2009) Adapting the logical basis of tests for Hardy-Weinberg Equilibrium to the real needs of association studies in human and medical genetics. Genet Epidemiol 33(7):569–580

    Article  PubMed  Google Scholar 

  67. SAS Institute Inc. (2008) SAS/Genetics™ 92 user’s guide. SAS Institute Inc., Cary, NC

    Google Scholar 

  68. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  69. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Purcell S (2009) PLINK (v1.07). http://pngu.mgh.harvard.edu/purcell/plink/

  71. Wang J, Yu R, Shete S (2014) X-chromosome genetic association test accounting for X-inactivation, skewed X-inactivation, and escape from X-inactivation. Genet Epidemiol 38(6):483–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clayton D (2008) Testing for association on the X chromosome. Biostatistics 9(4):593–600

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zheng G, Joo J, Zhang C, Geller NL (2007) Testing association for markers on the X chromosome. Genet Epidemiol 31(8):834–843

    Article  PubMed  Google Scholar 

  74. Graffelman J, Weir BS (2016) Testing for Hardy-Weinberg equilibrium at biallelic genetic markers on the X chromosome. Heredity (Edinb) 116(6):558–568

    Article  CAS  Google Scholar 

  75. Warnes G, Gorjanc G, Leisch F, Man M (2013) genetics: Population Genetics. R package version 1.3.8.1. https://CRAN.R-project.org/package=genetics

  76. Graffelman J (2015) Exploring diallelic genetic markers: the HardyWeinberg package. J Stat Softw 64(3):1–22

    Article  Google Scholar 

  77. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11(7):499–511

    Article  CAS  PubMed  Google Scholar 

  78. Shriner D (2013) Impact of Hardy-Weinberg disequilibrium on post-imputation quality control. Hum Genet 132(9):1073–1075

    Article  PubMed  Google Scholar 

  79. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5(6):e1000529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roshyara NR, Kirsten H, Horn K, Ahnert P, Scholz M (2014) Impact of pre-imputation SNP-filtering on genotype imputation results. BMC Genet 15:88

    Article  PubMed  PubMed Central  Google Scholar 

  81. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT (2010) Data quality control in genetic case-control association studies. Nat Protoc 5(9):1564–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fuchsberger C, Abecasis GR, Hinds DA (2015) minimac2: faster genotype imputation. Bioinformatics 31(5):782–784

    Article  CAS  PubMed  Google Scholar 

  83. Uh HW, Deelen J, Beekman M, Helmer Q, Rivadeneira F, Hottenga JJ, Boomsma DI, Hofman A, Uitterlinden AG, Slagboom PE, Bohringer S, Houwing-Duistermaat JJ (2012) How to deal with the early GWAS data when imputing and combining different arrays is necessary. Eur J Hum Genet 20(5):572–576

    Article  CAS  PubMed  Google Scholar 

  84. Southam L, Panoutsopoulou K, Rayner NW, Chapman K, Durrant C, Ferreira T, Arden N, Carr A, Deloukas P, Doherty M, Loughlin J, McCaskie A, Ollier WE, Ralston S, Spector TD, Valdes AM, Wallis GA, Wilkinson JM, Marchini J, Zeggini E (2011) The effect of genome-wide association scan quality control on imputation outcome for common variants. Eur J Hum Genet 19(5):610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Porcu E, Sanna S, Fuchsberger C, Fritsche LG (2013) Genotype imputation in genome-wide association studies. Curr Protoc Hum Genet Chapter 1:Unit 1.25

    Google Scholar 

  86. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44(8):955–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124(5):439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yu C, Zhang S, Zhou C, Sile S (2009) A likelihood ratio test of population Hardy-Weinberg equilibrium for case-control studies. Genet Epidemiol 33(3):275–280

    Article  PubMed  PubMed Central  Google Scholar 

  89. Taylor J, Tibshirani R (2006) A tail strength measure for assessing the overall univariate significance in a dataset. Biostatistics 7(2):167–181

    Article  PubMed  Google Scholar 

  90. Wang J, Shete S (2009) Is the tail-strength measure more powerful in tests of genetic association? Response. Am J Hum Genet 84(2):298–300

    Article  CAS  PubMed Central  Google Scholar 

  91. Painter I (2013) GWASExactHW: exactHardy-Weinburg testing for Genome Wide Association Studies. R package version 1.01. http://CRAN.R-project.org/package=GWASExactHW

  92. Maindonald JH and Johnson R (2016) hwde: Models and tests for departure from Hardy-Weinberg equilibrium and independence between loci. R package version 0.67. https://CRAN.R-project.org/package= hwde

  93. Zhao JH (2007) gap: Genetic analysis package. J Stat Softw 23(8):1–18

    Google Scholar 

  94. Cardillo G (2007) HWtest: a routine to test if a locus is in Hardy Weinberg equilibrium (exact test). http://www.mathworks.com/matlabcentral/fileexchange/14425-hwtest

  95. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  CAS  PubMed  Google Scholar 

  96. Li B, Leal SM (2009) Deviations from hardy-weinberg equilibrium in parental and unaffected sibling genotype data. Hum Hered 67(2):104–115

    Article  PubMed  Google Scholar 

  97. Lancaster HO (1961) Significance tests in discrete distributions. J Am Stat Assoc 56(294):223–234

    Article  Google Scholar 

  98. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425

    Article  CAS  PubMed  Google Scholar 

  99. Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95(1):5–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhu X, Wang J, Peng B, Shete S (2016) Empirical estimation of sequencing error rates using smoothing splines. BMC Bioinformatics 17:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Shete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, J., Shete, S. (2017). Testing Departure from Hardy-Weinberg Proportions. In: Elston, R. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 1666. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7274-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7274-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7273-9

  • Online ISBN: 978-1-4939-7274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics