Skip to main content

Intra- and Extra-cellular Proteome Analyses of Steroid-Producer Mycobacteria

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1645))

Abstract

The importance of the pathogenic mycobacteria has mainly focused the omic analyses on different aspects of their clinical significance. In contrast, those industrially relevant mycobacteria have received less attention, even though the steroids market sales in 2011, in example, were estimated in $8 billion.

The extra-cellular proteome, due to its relevance in the sterols processing and uptake; as well as the intra-cellular proteome, because of its role in steroids bioconversion, are the core of the present chapter. As a proof of concept, the obtaining methods for both sub-proteomes of Mycobacterium neoaurum NRRL B-3805, a relevant industrial strain involved in steroids production, have been developed. Thus, procedures and relevant key points of these proteomes analyses are fully described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bott M (2007) Corynebacteria: the good guys and the bad guys. Microbiol Today 34:74–77

    Google Scholar 

  2. Barreiro C, Martín JF (2015) Corynebacterium genus, a dual group of clinical and industrial relevant bacteria. In: Barreiro C (ed) New trends in Corynebacterium glutamicum: beyond the amino acids. Nova Science Publishers, Inc, New York

    Google Scholar 

  3. Shtratnikova VY, Bragin EY, Dovbnya DV et al (2014) Complete genome sequence of sterol-transforming Mycobacterium neoaurum strain VKM Ac-1815D. Genome Announc 2:12–13

    Article  Google Scholar 

  4. Tortoli E (2014) Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27:727–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Euzéby JP. List of Prokaryotic names with standing in nomenclature. http://www.bacterio.net/

  6. Goodfellow M, Kämpfer P, Busse HJ, et al. (2012) Bergey’s manual of systematic bacteriology. The actinobacteria, part B, vol 5. Springer, New York.

    Google Scholar 

  7. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  8. Mattow J, Siejak F, Hagens K et al (2009) Two-dimensional gel electrophoresis-based proteomics of mycobacteria. Methods Mol Biol (Clifton, NJ) 465:111–142

    Article  Google Scholar 

  9. Uhía I, Galán B, Kendall SL et al (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Rep 4:168–182

    Article  PubMed  Google Scholar 

  10. Liu M, Zhu ZT, Tao XY et al (2016) RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates. Microb Cell Fact 15:64

    Article  PubMed  PubMed Central  Google Scholar 

  11. World Health Organisation (WHO) (2014) Global tuberculosis report 2014

    Google Scholar 

  12. Korb VC, Chuturgoon AA, Moodley D (2016) Mycobacterium tuberculosis: manipulator of protective immunity. Int J Mol Sci 17:131

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar B (2015) World Leprosy Day 2015: Renewing commitment for a leprosy free world! Indian J Med Res 141(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wasinger VC, Cordwell SJ, Cerpa-Poljak A et al (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    Article  CAS  PubMed  Google Scholar 

  15. Wilkins MR, Sanchez JC, Gooley A et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  CAS  PubMed  Google Scholar 

  16. Wilkins MR, Pasquali C, Appel RD et al (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14:61–65

    CAS  PubMed  Google Scholar 

  17. James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30:279–331

    Article  CAS  PubMed  Google Scholar 

  18. Barreiro C (2015) Methods in proteomics applied to Corynebacterium glutamicum. In: Barreiro C (ed) New trends in Corynebacterium glutamicum: beyond the amino acids. Nova Science Publishers, Inc, New York

    Google Scholar 

  19. Bisht D, Singhal N, Sharma P et al (2006) Analysis of mycobacterial strains by two-dimensional gel electrophoresis. J Commun Dis 38:255–262

    PubMed  Google Scholar 

  20. Betts JC, Dodson P, Quan S et al (2000) Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology 146:3205–3216

    Article  CAS  PubMed  Google Scholar 

  21. Jungblut PR, Schaible UE, Mollenkopf HJ et al (1999) Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117

    Article  CAS  PubMed  Google Scholar 

  22. Kruh NA, Troudt J, Izzo A et al (2010) Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 5:e13938

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schmidt F, Donahoe S, Hagens K et al (2004) Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 3:24–42

    Article  CAS  PubMed  Google Scholar 

  24. Gupta MK, Subramanian V, Yadav JS (2009) Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of Mycobacterium immunogenum a newly recognized species of the Mycobacterium chelonaeMycobacterium abscessus group. J Proteome Res 8:2319–2330

    Article  CAS  PubMed  Google Scholar 

  25. Kruh-Garcia NA, Murray M, Prucha JG et al (2014) Antigen 85 variation across lineages of Mycobacterium tuberculosis—implications for vaccine and biomarker success. J Proteomics 97:141–150

    Article  CAS  PubMed  Google Scholar 

  26. Mattow J, Schaible UE, Schmidt F et al (2003) Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 24:3405–3420

    Article  CAS  PubMed  Google Scholar 

  27. Ranganathan S, Garg G (2009) Secretome: clues into pathogen infection and clinical applications. Genome Med 1:113

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yadav JS, Gupta M (2012) Secretome differences between the taxonomically related but clinically differing mycobacterial species Mycobacterium abscessus and M. chelonae. J Integr OMICS 2(2):64–79

    Article  Google Scholar 

  29. Mollenkopf HJ, Jungblut PR, Raupach B et al (1999) A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20:2172–2180

    Article  CAS  PubMed  Google Scholar 

  30. He Z, De Buck J (2010) Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155. BMC Microbiol 10:121

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sih CJ, Wang KC (1965) A new route to estrone from sterol. J Am Chem Soc 87:1387–1388

    Article  CAS  PubMed  Google Scholar 

  32. Al Jasem Y, Khan M, Taha A et al (2014) Preparation of steroidal hormones with an emphasis on transformations of phytosterols and cholesterol—a review. Mediterr J Chem 3:796–830

    Article  Google Scholar 

  33. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  34. Wang F, Yao K, Wei D (2011) From soybean phytosterols to steroid hormones. In: El-Shemy H (ed) Soybean and health. InTech, Rijeka, Croatia, pp 231–252

    Google Scholar 

  35. Bragin EY, Shtratnikova VY, Dovbnya DV et al (2013) Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol 138:41–53

    Article  CAS  PubMed  Google Scholar 

  36. Rodríguez-García A, Fernández-Alegre E, Morales A et al (2016) Complete genome sequence of “Mycobacterium neoaurum” NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65

    Article  PubMed  Google Scholar 

  37. Barreiro C, Martín JF, García-Estrada C (2012) Proteomics methodology applied to the analysis of filamentous fungi—new trends for an impressive diverse group of organisms. In: Prasain JK (ed) Tandem mass spectrometry—applications and principles. InTech, Rijeka, Croatia

    Google Scholar 

  38. Jeffery CJ (2014) An introduction to protein moonlighting. Biochem Soc Trans 42:1679–1683

    Article  CAS  PubMed  Google Scholar 

  39. Jeffery CJ (2009) Moonlighting proteins—an update. Mol Biosyst 5:345–350

    Article  CAS  PubMed  Google Scholar 

  40. Marsheck WJ, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23:72–77

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333

    Article  CAS  PubMed  Google Scholar 

  42. Greenbaum D, Luscombe NM, Jansen R et al (2001) Interrelating different types of genomic data, from proteome to secretome: ’oming in on function. Genome Res 11:1463–1468

    Article  CAS  PubMed  Google Scholar 

  43. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834:2380–2384

    Article  CAS  PubMed  Google Scholar 

  44. Tjalsma H, Bolhuis A, Jongbloed JD et al (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  46. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  47. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  48. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  49. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  50. Fazekas de St Groth S, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 71:377–391

    Article  CAS  PubMed  Google Scholar 

  51. Meyer TS, Lamberts BL (1965) Use of coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta 107:144–145

    Article  CAS  PubMed  Google Scholar 

  52. Westermeier R, Naven T, Hopker HR (2008) Proteomics in practice: a guide to successful experimental design, 2nd Completely Revised edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  53. Westermeier R (2006) Sensitive, quantitative, and fast modifications for Coomassie Blue staining of polyacrylamide gels. Proteomics 6 Suppl 2:61–64

    Google Scholar 

Download references

Acknowledgments

This work was fully supported by a grant of the European Union program ERA-IB [MySterI (EIB.12.010)] through the APCIN call of the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) (PCIN-2013-024-C02-01). The authors want to thank the European Union program ERA-IB; the Spanish Ministry of Economy and Competitiveness (MINECO, Spain); and the MySterI Consortium (INBIOTEC, Pharmins Ltd., University of York, SINTEF, Technische Universität Dortmund and Gadea Biopharma S.L.). We thank J. Merino, B. Martín, and A. Casenave for their excellent technical assistance and the degree students of the group A. Ibáñez and A. del Árbol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barreiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Barreiro, C., Morales, A., Vázquez-Iglesias, I., Sola-Landa, A. (2017). Intra- and Extra-cellular Proteome Analyses of Steroid-Producer Mycobacteria. In: Barredo, JL., Herráiz, I. (eds) Microbial Steroids. Methods in Molecular Biology, vol 1645. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7183-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7183-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7182-4

  • Online ISBN: 978-1-4939-7183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics