Advertisement

Knowledge-Based Compact Disease Models: A Rapid Path from High-Throughput Data to Understanding Causative Mechanisms for a Complex Disease

  • Anatoly Mayburd
  • Ancha BaranovaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1613)

Abstract

High-throughput profiling of human tissues typically yields the gene lists composed of a variety of more or less relevant molecular entities. These lists are riddle by false positive observations that often obstruct generation of mechanistic hypothesis that may explain complex phenotype. From general probabilistic considerations, the gene lists enriched by the mechanistically relevant targets can be far more useful for subsequent experimental design or data interpretation. Using Alzheimer’s disease as example, the candidate gene lists were processed into different tiers of evidence consistency established by enrichment analysis across subdatasets collected within the same experiment and across different experiments and platforms. The cutoffs were established empirically through ontological and semantic enrichment; resultant shortened gene list was reexpanded by Ingenuity Pathway Assistant tool. The resulting subnetworks provided the basis for generating mechanistic hypotheses that were partially validated by mined experimental evidence. This approach differs from previous consistency-based studies in that the cutoff on the Receiver Operating Characteristic of the true–false separation process is optimized by flexible selection of the consistency building procedure. The resultant Compact Disease Models (CDM) composed of the gene list distilled by this analytic technique and its network-based representation allowed us to highlight possible role of the protein traffic vesicles in the pathogenesis of Alzheimer’s. Considering the distances and complexity of protein trafficking in neurons, it is plausible to hypothesize that spontaneous protein misfolding along with a shortage of growth stimulation may provide a shortcut to neurodegeneration. Several potentially overlapping scenarios of early-stage Alzheimer pathogenesis are discussed, with an emphasis on the protective effects of Angiotensin receptor 1 (AT-1) mediated antihypertensive response on cytoskeleton remodeling, along with neuronal activation of oncogenes, luteinizing hormone signaling and insulin-related growth regulation, forming a pleiotropic model of its early stages. Compact Disease Model generation is a flexible approach for high-throughput data analysis that allows extraction of meaningful, mechanism-centered gene sets compatible with instant translation of the results into testable hypotheses.

Key words

Signature Network Knowledge-based algorithms Alzheimer’s Protein traffic vesicles Affymetrix Illumina Antihypertensive drugs 

Notes

Acknowledgments

The authors express their gratitude to the general support provided by College of Science, George Mason University and the Human Proteome Project Program of the Russian Academy of Medical Sciences.

Authors’ Contributions

Both authors contributed to the study design, interpretation of results, and producing the manuscript. All the authors read and approved the final manuscript.

Supplementary material

326653_1_En_17_MOESM1_ESM.xls (324 kb)
Additional file 1 Datasets A, B, and C: (the primary data). Dataset D: Tiered consistency scores for all scored genes (XLS 324 kb)
326653_1_En_17_MOESM2_ESM.xls (3.2 mb)
Additional file 2 The outputs of GO -MINER ontological analysis of the genes within Consistency Tier 0 (XLS 3257 kb)
326653_1_En_17_MOESM3_ESM.xls (1.6 mb)
Additional file 3 The outputs of GO-MINER ontological analysis of the genes within Consistency Tier 1 (XLS 1622 kb)
326653_1_En_17_MOESM4_ESM.xls (1.6 mb)
Additional file 4 The outputs of GO-MINER ontological analysis of the genes within Consistency Tier 2 (XLS 1630 kb)
326653_1_En_17_MOESM5_ESM.xls (1.6 mb)
Additional file 5 The outputs of GO-MINER ontological analysis of the genes within Consistency Tier 3 (XLS 1634 kb)
326653_1_En_17_MOESM6_ESM.xls (31 kb)
Additional file 6 The subnetwork composition for the Tier 1, including both experimental and inferred members (XLS 31 kb)
326653_1_En_17_MOESM7_ESM.xls (38 kb)
Additional file 7 The subnetwork composition for the Tiers 1–3, including both experimental and inferred members (XLS 38 kb)

References

  1. 1.
    Noam Levey (2010) Soaring cost of healthcare sets a record. In: Los-Angeles Times. http://articles.latimes.com. Accessed 28 Oct 2016
  2. 2.
    Julie Steenhuysen (2012) A look at Alzheimer’s Health Costs. http://www.huffingtonpost.com/. Accessed 28 Oct 2016
  3. 3.
    Feldman B, Pai M, Rivard G et al (2006) Tailored prophylaxis in severe hemophilia A: interim results from the first 5 years of the Canadian Hemophilia Primary Prophylaxis Study. J Thromb Haemost 4(6):1228–1236CrossRefGoogle Scholar
  4. 4.
    Mayburd A, Golovchikova I, Mulshine J (2008) Successful anti-cancer drug targets able to pass FDA review demonstrate the identifiable signature distinct from the signatures of random genes and initially proposed targets. Bioinformatics 24(3):389–395CrossRefPubMedGoogle Scholar
  5. 5.
    Hu J, Hagler A (2002) Chemoinformatics and drug discovery. Molecule 7:566–600CrossRefGoogle Scholar
  6. 6.
    Lim HA (1997) Bioinformatics and cheminformatics in the drug discovery cycle. In: Ralf H, Thomas L, Markus L, Dietmer S (eds) Bioinformatics, Lecture notes in computer science, vol 1278. Springer, Berlin, pp 30–43CrossRefGoogle Scholar
  7. 7.
    Sambamurti K, Jagannatha R, Pappolla M (2009) Frontiers in the pathogenesis of Alzheimer’s disease. Indian J Psychiatry 51(Suppl 1):S56–S60PubMedPubMedCentralGoogle Scholar
  8. 8.
    GeneCards (2012) Weitzman Institute of Science, Rehovot, Israel. http://wwwgenecardsorg. Accessed 28 Oct 2016
  9. 9.
    Ramsköld D, Wang E, Burge C (2009) An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 5(12):e1000598CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mason R, Gunst R, Hess J (2003) Statistical design and analysis of experiments: with applications to engineering and science. Wiley series in probability and statistics - applied probability and statistics section series, 2nd edn, vol 474. John Wiley & Sons, Hoboken, NJ, p 760Google Scholar
  11. 11.
    Rhodes D, Yu J, Shanker K et al (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101:9309–9314CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xu L, Geman D, Winslow R (2007) Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinformatics 8:275CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tsoi L, Qin T, Slate E (2011) Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior. BMC Bioinformatics 2(1):438CrossRefGoogle Scholar
  14. 14.
    Mayburd A (2009) Expression variation: its relevance to emergence of chronic disease and to therapy. PLoS One 4(6):e5921CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Glinsky G, Berezovska O, Glinskii A (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115(6):1503–1521CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu Y, Koyutürk M, Maxwell S et al (2012) Integrative analysis of common neurodegenerative diseases using gene association, interaction networks and mRNA expression data. AMIA Summits Transl Sci Proc 2012:62–71PubMedPubMedCentralGoogle Scholar
  17. 17.
    Barrenas F, Chavali S, Holme P et al (2009) Network properties of complex human disease genes identified through genome-wide association studies. PLoS One 4(11):e8090CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ochs MF (2010) Knowledge-based data analysis comes of age. Brief Bioinform 11(1):30–39CrossRefGoogle Scholar
  19. 19.
    Li N, Lee A, Whitmer R et al (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 340:b5465CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Davies N, Kehoe P, Ben-Shlomo Y et al (2011) Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis 26(4):699–708PubMedGoogle Scholar
  21. 21.
    Shah K, Qureshi S, Johnson M et al (2009) Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review. Am J Geriatr Pharmacother 7(5):250–261CrossRefPubMedGoogle Scholar
  22. 22.
    Wagner G, Icks A, Abholz H (2012) Antihypertensive treatment and risk of dementia: a retrospective database study. Int J Clin Pharmacol Ther 50(3):195–201CrossRefPubMedGoogle Scholar
  23. 23.
    Sun J, Feng X, Liang D (2012) Down-regulation of energy metabolism in Alzheimer’s disease is a protective response of neurons to the microenvironment. J Alzheimers Dis 28(2):389–402Google Scholar
  24. 24.
    Kafri R, Dahan O, Levy J (2008) Preferential protection of protein interaction network hubs in yeast: evolved functionality of genetic redundancy. Proc Natl Acad Sci U S A 105(4):1243–1248CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837CrossRefGoogle Scholar
  26. 26.
    Albert R, DasGupta B, Hegde R et al (2011) Computationally efficient measure of topological redundancy of biological and social networks. Phys Rev E Stat Nonlin Soft Matter Phys 84(3 Pt 2):036117CrossRefGoogle Scholar
  27. 27.
    Kresse S, Szuhai K, Barragan-Polania A et al (2010) Evaluation of high-resolution microarray platforms for genomic profiling of bone tumours. BMC Res Notes 3:223CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chang J, Wei N, Su H et al (2012) Comparison of genomic signatures of non-small cell lung cancer recurrence between two microarray platforms. Anticancer Res 32(4):1259–1265PubMedGoogle Scholar
  29. 29.
    Merico D, Isserlin R, Stueker O et al (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5(11):e13984CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Verdile G, Laws S, Henley D et al (2012) Associations between gonadotropins, testosterone and β amyloid in men at risk of Alzheimer’s disease. Mol Psychiatry 19(1):69–75CrossRefPubMedGoogle Scholar
  31. 31.
    Bartl J, Meyer A, Brendler S, Riederer P et al (2013) Different effects of soluble and aggregated amyloid β(42) on gene/protein expression and enzyme activity involved in insulin and APP pathways. J Neural Transm 120(1):113–120CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang T, Fu J, Geng Z (2012) The neuroprotective effect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci Ther 18(12):981–987CrossRefPubMedGoogle Scholar
  33. 33.
    Palkovits M, Šebeková K, Klenovics K (2013) Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease-modulatory effects of losartan and moxonidine. PLoS One 8(6):e66543CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hashikawa-Hobara N, Hashikawa N, Inoue Y et al (2012) Candesartan cilexetil improves angiotensin II type 2 receptor-mediated neurite outgrowth via the PI3K-Akt pathway in fructose-induced insulin-resistant rats. Diabetes 61(4):925–932CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mitra A, Gao L, Zucker I (2010) Angiotensin II-induced upregulation of AT(1) receptor expression: sequential activation of NF-kappaB and Elk-1 in neurons. Am J Physiol Cell Physiol 299(3):C561–C569CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moreno A, Franci C (2004) Estrogen modulates the action of nitric oxide in the medial preoptic area on luteinizing hormone and prolactin secretion. Life Sci 74(16):2049–2059CrossRefPubMedGoogle Scholar
  37. 37.
    Harada N, Shimozawa N, Okajima K (2009) AT(1) receptor blockers increase insulin-like growth factor-I production by stimulating sensory neurons in spontaneously hypertensive rats. Transl Res 154(3):142–152CrossRefPubMedGoogle Scholar
  38. 38.
    Miyamoto N, Zhang N, Tanaka R et al (2011) Neuroprotective role of angiotensin II type 2 receptor after transient focal ischemia in mice brain. Neurosci Res 61(3):249–256CrossRefGoogle Scholar
  39. 39.
    Kiyota T, Ingraham K, Jacobsen M (2011) FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc Natl Acad Sci U S A 108(49):E1339–E1348CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Webber K, Casadesus G, Bowen R (2007) Evidence for the role of luteinizing hormone in Alzheimer disease. Endocr Metab Immune Disord Drug Targets 7(4):300–303CrossRefPubMedGoogle Scholar
  41. 41.
    Stroth U, Meffert S, Gallinat S et al (1998) Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. Brain Res Mol Brain Res 53(1–2):187–195CrossRefPubMedGoogle Scholar
  42. 42.
    Laflamme L, Gasparo M, Gallo J (1996) Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells. Effect counteracted by the AT1 receptors. J Biol Chem 271(37):22729–22735CrossRefGoogle Scholar
  43. 43.
    Govindarajan G, Eble D, Lucchesi P et al (2000) Focal adhesion kinase is involved in angiotensin II-mediated protein synthesis in cultured vascular smooth muscle cells. Circ Res 87(8):710–716CrossRefPubMedGoogle Scholar
  44. 44.
    Hercule H, Tank J, Plehm R et al (2007) Regulator of G protein signalling 2 ameliorates angiotensin II-induced hypertension in mice. Exp Physiol 92(6):1014–1022CrossRefPubMedGoogle Scholar
  45. 45.
    Heximer S, Knutsen R, Sun X et al (2003) Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 111(4):445–452CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Matsuzaki N, Nishiyama M, Song D et al (2011) Potent and selective inhibition of angiotensin AT1 receptor signaling by RGS2: roles of its N-terminal domain. Cell Signal 23(6):1041–1049CrossRefPubMedGoogle Scholar
  47. 47.
    Fujio Y (2010) RGS2 determines the preventive effects of ARBs against vascular remodeling: toward personalized medicine of anti-hypertensive therapy with ARBs. Hypertens Res 33(12):1221–1222CrossRefPubMedGoogle Scholar
  48. 48.
    Mitchell A, Rushentsova U, Siffert W (2006) The angiotensin II receptor antagonist valsartan inhibits endothelin 1-induced vasoconstriction in the skin microcirculation in humans in vivo: influence of the G-protein beta3 subunit (GNB3) C825T polymorphism. Clin Pharmacol Ther 79(3):274–281CrossRefPubMedGoogle Scholar
  49. 49.
    Hyde Z, Flicker L, Almeida O et al (2010) Higher luteinizing hormone is associated with poor memory recall: the health in men study. J Alzheimers Dis 19(3):943–951CrossRefPubMedGoogle Scholar
  50. 50.
    Chu C, Zhou J, Zhao Y et al (2012) Expression of FSH and its co-localization with FSH receptor and GnRH receptor in rat cerebellar cortex. J Mol Histol 44(1):19–26CrossRefGoogle Scholar
  51. 51.
    Casadesus G, Atwood C, Zhu X et al (2005) Evidence for the role of gonadotropin hormones in the development of Alzheimer disease. Cell Mol Life Sci 62(3):293–298CrossRefGoogle Scholar
  52. 52.
    Karlsson A, Maizels E, Flynn M et al (2010) Luteinizing hormone receptor-stimulated progesterone production by preovulatory granulosa cells requires protein kinase A-dependent activation/dephosphorylation of the actin dynamizing protein cofilin. Mol Endocrinol 24(9):1765–1781CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nicholls P, Harrison C, Walton K et al (2011) Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology 152(4):1670–1683CrossRefPubMedGoogle Scholar
  54. 54.
    Pantic I, Basta-Jovanovic G, Starcevic V et al (2013) Complexity reduction of chromatin architecture in macula densa cells during mouse postnatal development. Nephrology (Carlton) 18(2):117–124CrossRefGoogle Scholar
  55. 55.
    King G, Rosene D, Abraham C (2012) Promoter methylation and age-related downregulation of Klotho in rhesus monkey. Age (Dordr) 34(6):1405–1419CrossRefGoogle Scholar
  56. 56.
    Klein C, Botuyan M, Wu Y (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43(6):595–600CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pietrzak M, Rempala G, Nelson P (2011) Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease. PLoS One 6(7):e22585CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Johnson A, Akman K, Calimport S et al (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15(5):483–494CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yoon H, Ghee J, Piao S et al (2011) Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant 26(3):800–813CrossRefGoogle Scholar
  60. 60.
    Chu C, Lo J, Hu W et al (2012) Histone acetylation is essential for ANG-II-induced IGF-IIR gene expression in H9c2 cardiomyoblast cells and pathologically hypertensive rat heart. J Cell Physiol 227(1):259–268CrossRefPubMedGoogle Scholar
  61. 61.
    Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E (2012) Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 123(1):53–70CrossRefPubMedGoogle Scholar
  62. 62.
    Gunawardena S, Yang G, Goldstein L (2013) Presenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo. Hum Mol Genet 22(19):3828–3843CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Driver J, Beiser A, Au R et al (2012) Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ 344:e1442CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Keeney J, Swomley A, Harris J et al (2012) Cell cycle proteins in brain in mild cognitive impairment: insights into progression to Alzheimer disease. Neurotox Res 22(3):220–230CrossRefPubMedGoogle Scholar
  65. 65.
    Sieradzki A, Yendluri B, Palacios H et al (2011) Implication of oncogenic signaling pathways as a treatment strategy for neurodegenerative disorders-contemporary approaches. CNS Neurol Disord Drug Targets 10(2):175–183CrossRefPubMedGoogle Scholar
  66. 66.
    Demetrius L, Simon D (2013) The inverse association of cancer and Alzheimer’s: a bioenergetic mechanism. J R Soc Interface 10(82):20130006CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Eckert G, Renner K, Eckert S et al (2012) Mitochondrial dysfunction–a pharmacological target in Alzheimer’s disease. Mol Neurobiol 46(1):136–150CrossRefGoogle Scholar
  68. 68.
    Bowen R, Smith M, Harris P (2002) Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer’s disease pathology. J Neurosci Res 70:514–518CrossRefPubMedGoogle Scholar
  69. 69.
    Godyń J, Jończyk J, Panek D et al (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68(1):127–138CrossRefPubMedGoogle Scholar
  70. 70.
    Waite L (2015) Treatment for Alzheimer’s disease: has anything changed? Aust Prescr 38(2):60–63CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, de Leon MJ (2010) Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis 20(3):843–854CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Caldwell C, Yao J, Brinton R (2015) Targeting the prodromal stage of Alzheimer’s disease: bioenergetic and mitochondrial opportunities. Neurotherapeutics 12(1):66–80CrossRefPubMedGoogle Scholar
  73. 73.
    Rettberg JR, Yao J, Brinton R (2014) Estrogen: a master regulator of bioenergetics systems in the brain and body. Front Neuroendocrinol 35(1):8–30CrossRefPubMedGoogle Scholar
  74. 74.
    Maimaiti S, Anderson K, DeMoll C et al (2016) Intranasal insulin improves age-related cognitive deficits and reverses electrophysiological correlates of brain aging. J Gerontol A Biol Sci Med Sci 71(1):30–39CrossRefPubMedGoogle Scholar
  75. 75.
    de la Monte S (2013) Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 10(12):1699–1709CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Winkler J, Fox H (2013) Transcriptome meta-analysis reveals a central role for sexsteroids in the degeneration of hippocampal neurons in Alzheimer’s disease. BMC Syst Biol 7:51CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bove R, Secor E, Chibnik L et al (2014) Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82(3):222–229CrossRefPubMedCentralGoogle Scholar
  78. 78.
    Engler-Chiurazzi E, Singh M, Simpkins J (2015) From the 90s to now: a brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res 1633:96–100CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chen Y, Pan C, Xuan A et al (2015) Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med Sci Monit 21:3608–3615CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tuszynski M, Yang J, Barba D (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72(10):1139–1147CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Tatarnikova O, Orlov M, Bobkova N (2015) Beta-amyloid and tau-protein: structure, interaction, and prion-like properties. Biochemistry (Mosc) 80(13):1800–1819CrossRefGoogle Scholar
  82. 82.
    Cohen M, Appleby B, Safar J (2016) Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer disease. Prion 10(1):9–17CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hochgräfe K, Sydow A, Matenia D et al (2015) Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathol Commun 3:25CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Paban V, Manrique C, Filali M (2014) Therapeutic and preventive effects of methylene blue on Alzheimer’s disease pathology in a transgenic mouse model. Neuropharmacology 76(Pt A):68–79CrossRefPubMedGoogle Scholar
  85. 85.
    Cavaliere P, Torrent J, Prigent S et al (2013) Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim Biophys Acta 1832(1):20–28CrossRefPubMedGoogle Scholar
  86. 86.
    Chen X, Hu J, Jiang L et al (2014) Brilliant Blue G improves cognition in an animal model of Alzheimer’s disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience 279:94–101CrossRefPubMedGoogle Scholar
  87. 87.
    Wong H, Qi W, Choi H et al (2011) A safe, blood-brain barrier permeable triphenylmethane dye inhibits amyloid-β neurotoxicity by generating nontoxic aggregates. ACS Chem Nerosci 2(11):645–657CrossRefGoogle Scholar
  88. 88.
    Irwin JA, Erisir A, Kwon I (2016) Oral triphenylmethane food dye analog, brilliant blue G, prevents neuronal loss in APPSwDI/NOS2−/− mouse model. Curr Alzheimer Res 13(6):663–677CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Risse E, Nicoll A, Taylor W, Wright D et al (2015) Identification of a compound that disrupts binding of amyloid-β to the prion protein using a novel fluorescence-based assay. J Biol Chem 290(27):17020–17028CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Pihlaja R, Koistinaho J, Malm T et al (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56(2):154–163CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.The Center of the Study of Chronic Metabolic and Rare Diseases, School of Systems Biology, College of ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Research Centre for Medical GeneticsRAMSMoscowRussia

Personalised recommendations