Skip to main content

Advertisement

Log in

Cell Cycle Proteins in Brain in Mild Cognitive Impairment: Insights into Progression to Alzheimer Disease

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated the re-emergence of cell cycle proteins in brain as patients progress from the early stages of mild cognitive impairment (MCI) into Alzheimer’s disease (AD). Oxidative stress markers present in AD have also been shown to be present in MCI brain suggesting that these events occur in early stages of the disease. The levels of key cell cycle proteins, such as CDK2, CDK5, cyclin G1, and BRAC1 have all been found to be elevated in MCI brain compared to age-matched control. Further, peptidyl prolyl cis–trans isomerase (Pin1), a protein that plays an important role in regulating the activity of key proteins, such as CDK5, GSK3-β, and PP2A that are involved in both the phosphorylation state of Tau and in the cell cycle, has been found to be oxidatively modified and downregulated in both AD and MCI brain. Hyperphosphorylation of Tau then results in synapse loss and the characteristic Tau aggregation as neurofibrillary tangles, an AD hallmark. In this review, we summarized the role of cell cycle dysregulation in the progression of disease from MCI to AD. Based on the current literature, it is tempting to speculate that a combination of oxidative stress and cell cycle dysfunction conceivably leads to neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MCI:

Mild cognitive impairment

aMCI:

Amnestic MCI

AD:

Alzheimer’s disease

NFTs:

Include amyloid beta plaques, neurofibrillary tangles

aβ:

Amyloid beta peptide

APP:

Amyloid precursor protein

LRP1:

Low density lipoprotein receptor-related protein 1

ATP:

Adenosine triphosphate

Pin1:

Peptidyl prolyl cis–trans isomerase

GSK3-β:

Glycogen synthase kinase 3-beta

PP2A:

Protein phosphatase 2A

M:

Mitotic

S:

Synthesis

G:

Gap

CDK:

Cyclin-dependent kinase

CKI:

Cyclin-dependent kinase inhibitor

Rb:

Retinoblastoma protein

VZ:

Ventricular zone

SVZ:

Subventricular zone

CNS:

Central nervous system

E2F1:

E2F transcription factor 1

DP1:

Dimerization partner 1

INK4:

Inhibitors of CDK4

CAK:

CDK-activating kinase

cdc:

Cell division control

Cip/Kip:

CDK interacting protein/Kinase inhibitory protein

MAT1:

Methionine adenosyltransferase 1

IPL:

Inferior parietal lobule

BRCA1:

Breast cancer type 1 susceptibility protein

PM:

Plasma membrane

Wee1:

Ser/Thr family nuclear kinase

P3:

Harmless soluble N-terminal fragment of APP

p53:

Tumor suppressor protein 53

p21:

CIP1/WAF1 cyclin-dependent kinase inhibitor

Mdm2:

Murine double minute oncogene

References

  • Aluise CD, Robinson RA, Cai J, Pierce WM, Markesbery WR, Butterfield DA (2011) Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer’s disease: insights into memory loss in MCI. J Alzheimers Dis 23(2):257–269. doi:10.3233/JAD-2010-101083

    PubMed  CAS  Google Scholar 

  • Arendt T, Bruckner MK (2007) Linking cell-cycle dysfunction in Alzheimer’s disease to a failure of synaptic plasticity. Biochim Biophys Acta 1772(4):413–421. doi:10.1016/j.bbadis.2006.12.005

    Article  PubMed  CAS  Google Scholar 

  • Atabay KD, Karabay A (2011) Pin1 inhibition activates cyclin D and produces neurodegenerative pathology. J Neurochem. doi:10.1111/j.1471-4159.2011.07259.x

  • Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana R, Galli F, Memo M, Butterfield DA (2008) Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis 29(3):456–464. doi:10.1016/j.nbd.2007.11.004

    Article  PubMed  CAS  Google Scholar 

  • Bates S, Rowan S, Vousden KH (1996) Characterisation of human cyclin G1 and G2: DNA damage inducible genes. Oncogene 13(5):1103–1109

    PubMed  CAS  Google Scholar 

  • Bonda DJ, Evans TA, Santocanale C, Llosa JC, Vina J, Bajic VP, Castellani RJ, Siedlak SL, Perry G, Smith MA, Lee HG (2009) Evidence for the progression through S-phase in the ectopic cell cycle re-entry of neurons in Alzheimer disease. Aging (Albany NY) 1(4):382–388

    CAS  Google Scholar 

  • Bonda DJ, Lee HP, Kudo W, Zhu X, Smith MA, Lee HG (2010) Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev Mol Med 12:e19. doi:10.1017/S146239941000150X

    Article  PubMed  Google Scholar 

  • Butterfield DA, Lange ML (2009) Multifunctional roles of enolase in Alzheimer’s disease brain: beyond altered glucose metabolism. J Neurochem 111(4):915–933. doi:10.1111/j.1471-4159.2009.06397.x

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Abdul HM, Opii W, Newman SF, Joshi G, Ansari MA, Sultana R (2006a) Pin1 in Alzheimer’s disease. J Neurochem 98(6):1697–1706. doi:10.1111/j.1471-4159.2006.03995.x

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006b) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22(2):223–232. doi:10.1016/j.nbd.2005.11.002

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Reed T, Perluigi M, De Marco C, Coccia R, Cini C, Sultana R (2006c) Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett 397(3):170–173. doi:10.1016/j.neulet.2005.12.017

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Reed TT, Perluigi M, De Marco C, Coccia R, Keller JN, Markesbery WR, Sultana R (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248. doi:10.1016/j.brainres.2007.02.084

    Article  PubMed  CAS  Google Scholar 

  • Cenini G, Sultana R, Memo M, Butterfield DA (2008a) Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radic Biol Med 45(1):81–85. doi:10.1016/j.freeradbiomed.2008.03.015

    Article  PubMed  CAS  Google Scholar 

  • Cenini G, Sultana R, Memo M, Butterfield DA (2008b) Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Cell Mol Med 12(3):987–994. doi:10.1111/j.1582-4934.2008.00163.x

    Article  PubMed  CAS  Google Scholar 

  • Cicero S, Herrup K (2005) Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci 25(42):9658–9668. doi:10.1523/JNEUROSCI.1773-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M (2001) Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 24(1):25–31

    Article  PubMed  CAS  Google Scholar 

  • Crenshaw DG, Yang J, Means AR, Kornbluth S (1998) The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J 17(5):1315–1327. doi:10.1093/emboj/17.5.1315

    Article  PubMed  CAS  Google Scholar 

  • Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14(3):390–394. doi:10.1016/j.conb.2004.05.002

    Article  PubMed  CAS  Google Scholar 

  • Currais A, Hortobagyi T, Soriano S (2009) The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease. Aging (Albany NY) 1(4):363–371

    CAS  Google Scholar 

  • Dalle-Donne I, Scaloni A, Butterfield DA (2006) Redox proteomics: from protein modifications to cellular dysfunction and diseases. John Wiley & Sons, Hoboken, NJ

  • Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34(5):1416–1426. doi:10.1093/nar/gkl010

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Markesbery WR, Cecarini V, Keller JN (2006) Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res 31(5):705–710. doi:10.1007/s11064-006-9071-5

    Article  PubMed  CAS  Google Scholar 

  • Evans TA, Raina AK, Delacourte A, Aprelikova O, Lee HG, Zhu X, Perry G, Smith MA (2007) BRCA1 may modulate neuronal cell cycle re-entry in Alzheimer disease. Int J Med Sci 4(3):140–145

    Article  PubMed  CAS  Google Scholar 

  • Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, Calin GA, Grazi GL, Croce CM, Tavolari S, Chieco P, Negrini M, Bolondi L (2009) MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 69(14):5761–5767. doi:10.1158/0008-5472.CAN-08-4797

    Article  PubMed  CAS  Google Scholar 

  • Gant JC, Sama MM, Landfield PW, Thibault O (2006) Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+-induced Ca2+ release. J Neurosci 26(13):3482–3490. doi:10.1523/JNEUROSCI.4171-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF (2010) Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta 1802(1):122–134. doi:10.1016/j.bbadis.2009.08.010

    Article  PubMed  CAS  Google Scholar 

  • Gorman AM (2008) Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J Cell Mol Med 12(6A):2263–2280. doi:10.1111/j.1582-4934.2008.00402.x

    Article  PubMed  CAS  Google Scholar 

  • Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11(2):211–219

    PubMed  CAS  Google Scholar 

  • Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65(5):2146–2156

    Article  PubMed  CAS  Google Scholar 

  • Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8(5):368–378. doi:10.1038/nrn2124

    Article  PubMed  CAS  Google Scholar 

  • Hoglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, Degregori J, Oertel WH, Rakic P, Hirsch EC, Hunot S (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104(9):3585–3590. doi:10.1073/pnas.0611671104

    Article  PubMed  Google Scholar 

  • Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17):2776–2786. doi:10.1038/sj.onc.1208613

    Article  PubMed  CAS  Google Scholar 

  • Iijima K, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, Greengard P, Kirino Y, Nairn AC, Suzuki T (2000) Neuron-specific phosphorylation of Alzheimer’s beta-amyloid precursor protein by cyclin-dependent kinase 5. J Neurochem 75(3):1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF, Knopman DS, Smith GE, Ivnik RJ, Tangalos EG, Petersen RC (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65(8):1227–1231. doi:10.1212/01.wnl.0000180958.22678.91

    Article  PubMed  Google Scholar 

  • Jensen MR, Factor VM, Thorgeirsson SS (1998) Regulation of cyclin G1 during murine hepatic regeneration following Dipin-induced DNA damage. Hepatology 28(2):537–546. doi:10.1002/hep.510280235

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64(7):1152–1156. doi:10.1212/01.WNL.0000156156.13641.BA

    Article  PubMed  CAS  Google Scholar 

  • Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697(1–2):143–153. doi:10.1016/j.bbapap.2003.11.020

    PubMed  CAS  Google Scholar 

  • Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 90(3):1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Kimura SH, Nojima H (2002) Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes Cells 7(8):869–880

    Article  PubMed  CAS  Google Scholar 

  • Korhonen L, Brannvall K, Skoglosa Y, Lindholm D (2003) Tumor suppressor gene BRCA-1 is expressed by embryonic and adult neural stem cells and involved in cell proliferation. J Neurosci Res 71(6):769–776. doi:10.1002/jnr.10546

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M, Mattson MP (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41(4):549–561

    Article  PubMed  CAS  Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807. doi:10.1523/JNEUROSCI.3501-06.2007

    Article  PubMed  CAS  Google Scholar 

  • Landrieu I, Smet-Nocca C, Amniai L, Louis JV, Wieruszeski JM, Goris J, Janssens V, Lippens G (2011) Molecular Implication of PP2A and Pin1 in the Alzheimer’s Disease Specific Hyperphosphorylation of Tau. PLoS One 6(6):e21521. doi:10.1371/journal.pone.0021521

    Article  PubMed  CAS  Google Scholar 

  • Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain. J Neurochem 78:413–416

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163(1):83–95. doi:10.1083/jcb.200301115

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Hall GF, Shea TB (2011) Potentiation of Tau Aggregation by cdk5 and GSK3beta. J Alzheimers Dis. doi:10.3233/JAD-2011-102016

  • Lopes JP, Oliveira CR, Agostinho P (2009) Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-beta and prion peptides. Cell Cycle 8(1):97–104

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8(11):904–916. doi:10.1038/nrm2261

    Article  PubMed  CAS  Google Scholar 

  • Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788. doi:10.1038/21650

    Article  PubMed  CAS  Google Scholar 

  • Machulda MM, Senjem ML, Weigand SD, Smith GE, Ivnik RJ, Boeve BF, Knopman DS, Petersen RC, Jack CR (2009) Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks. J Int Neuropsychol Soc 15(3):372–382. doi:10.1017/S1355617709090523

    Article  PubMed  Google Scholar 

  • MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH, El-Deiry WS (2000) BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 275(4):2777–2785

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR (2010) Neuropathologic alterations in mild cognitive impairment: a review. J Alzheimers Dis 19(1):221–228. doi:10.3233/JAD-2010-1220

    PubMed  Google Scholar 

  • Melkoumian ZK, Peng X, Gan B, Wu X, Guan JL (2005) Mechanism of cell cycle regulation by FIP200 in human breast cancer cells. Cancer Res 65(15):6676–6684. doi:10.1158/0008-5472.CAN-04-4142

    Article  PubMed  CAS  Google Scholar 

  • Mohmmad Abdul H, Butterfield DA (2005) Protection against amyloid beta-peptide (1–42)-induced loss of phospholipid asymmetry in synaptosomal membranes by tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester: implications for Alzheimer’s disease. Biochim Biophys Acta 1741(1–2):140–148. doi:10.1016/j.bbadis.2004.12.002

    PubMed  CAS  Google Scholar 

  • Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, Beffert U, Brady ST (2004) A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 23(11):2235–2245. doi:10.1038/sj.emboj.7600237

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, Esiri MM, Smith AD (1998) The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 87(4):731–739

    Article  PubMed  CAS  Google Scholar 

  • Nguyen MD, Boudreau M, Kriz J, Couillard-Despres S, Kaplan DR, Julien JP (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 23(6):2131–2140

    PubMed  CAS  Google Scholar 

  • Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13(20):4816–4822

    PubMed  CAS  Google Scholar 

  • Okamoto K, Prives C (1999) A role of cyclin G in the process of apoptosis. Oncogene 18(32):4606–4615. doi:10.1038/sj.onc.1202821

    Article  PubMed  CAS  Google Scholar 

  • Osuga H, Osuga S, Wang F, Fetni R, Hogan MJ, Slack RS, Hakim AM, Ikeda JE, Park DS (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci USA 97(18):10254–10259. doi:10.1073/pnas.170144197

    Article  PubMed  CAS  Google Scholar 

  • Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G, Banks WA, Butterfield DA (2010) Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer’s disease: implications for Ab accumulation in AD brain. Free Radic Biol Med 49:1798–1803

    Article  PubMed  CAS  Google Scholar 

  • Reed TT, Pierce WM, Markesbery WR, Butterfield DA (2009) Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 1274:66–76. doi:10.1016/j.brainres.2009.04.009

    Article  PubMed  CAS  Google Scholar 

  • Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC (2009) Redox control of the cell cycle in health and disease. Antioxid Redox Signal 11(12):2985–3011. doi:10.1089/ARS.2009.2513

    Article  PubMed  CAS  Google Scholar 

  • Schafer KA (1998) The cell cycle: a review. Vet Pathol 35(6):461–478

    Article  PubMed  CAS  Google Scholar 

  • Scheff S (2003) Reactive synaptogenesis in aging and Alzheimer’s disease: lessons learned in the Cotman laboratory. Neurochem Res 28(11):1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, Price DA (1998) Synaptic density in the inner molecular layer of the hippocampal dentate gyrus in Alzheimer disease. J Neuropathol Exp Neurol 57(12):1146–1153

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24(8):1029–1046

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384. doi:10.1016/j.neurobiolaging.2005.09.012

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23(36):9408–9421. doi:10.1200/JCO.2005.01.5594

    Article  PubMed  CAS  Google Scholar 

  • Shelton SB, Johnson GV (2004) Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 88(6):1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79(4):551–555

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Sayre LM, Monnier VM, Perry G (1996) Oxidative posttranslational modifications in Alzheimer disease. A possible pathogenic role in the formation of senile plaques and neurofibrillary tangles. Mol Chem Neuropathol 28(1-3):41–48. doi:10.1007/BF02815203

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Kontny HU, Bortnick R, Fornace AJ Jr (1997) The p53-regulated cyclin G gene promotes cell growth: p53 downstream effectors cyclin G and Gadd45 exert different effects on cisplatin chemosensitivity. Exp Cell Res 230(1):61–68. doi:10.1006/excr.1996.3402

    Article  PubMed  CAS  Google Scholar 

  • Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB (2007) Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell 18(12):5060–5068. doi:10.1091/mbc.E07-04-0327

    Article  PubMed  CAS  Google Scholar 

  • Sultana R, Butterfield DA (2007) Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment. Neurochem Res 32(4–5):655–662. doi:10.1007/s11064-006-9123-x

    Article  PubMed  CAS  Google Scholar 

  • Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis 19(1):341–353. doi:10.3233/JAD-2010-1222

    PubMed  Google Scholar 

  • Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging 27(7):918–925. doi:10.1016/j.neurobiolaging.2005.05.005

    Article  PubMed  CAS  Google Scholar 

  • Sultana R, Perluigi M, Newman SF, Pierce WM, Cini C, Coccia R, Butterfield DA (2010) Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer’s disease. Antioxid Redox Signal 12(3):327–336. doi:10.1089/ars.2009.2810

    Article  PubMed  CAS  Google Scholar 

  • Ueberham U, Arendt T (2005) The expression of cell cycle proteins in neurons and its relevance for Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 4(3):293–306

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96(3):825–832. doi:10.1111/j.1471-4159.2005.03615.x

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Herrup K (2007) Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta 1772(4):457–466. doi:10.1016/j.bbadis.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23(7):2557–2563

    PubMed  CAS  Google Scholar 

  • Zhang J, Li H, Yabut O, Fitzpatrick H, D’Arcangelo G, Herrup K (2010) Cdk5 suppresses the neuronal cell cycle by disrupting the E2F1-DP1 complex. J Neurosci 30(15):5219–5228. doi:10.1523/JNEUROSCI.5628-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772(4):494–502. doi:10.1016/j.bbadis.2006.10.014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is dedicated to the outstanding research contribution by Mark A. Smith, a good friend who will be sorely missed, and is supported in part by a NIH grant to D.A.B. [AG-05119].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Allan Butterfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keeney, J.T.R., Swomley, A.M., Harris, J.L. et al. Cell Cycle Proteins in Brain in Mild Cognitive Impairment: Insights into Progression to Alzheimer Disease. Neurotox Res 22, 220–230 (2012). https://doi.org/10.1007/s12640-011-9287-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9287-2

Keywords

Navigation