Skip to main content

Advertisement

Log in

Different effects of soluble and aggregated amyloid β42 on gene/protein expression and enzyme activity involved in insulin and APP pathways

  • Dementias - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Although Alzheimer’s dementia (AD) is not characterised any longer simply as the accumulation and deposition of amyloid beta (Aβ) peptides and hyperphosphorylation of tau proteins within the brain, excessive Aβ42 deposition is still considered to play a major role in this illness. Aβ are able to adopt many differently aggregate forms, including amyloid fibrils as well as nonfibrillar structures (soluble Aβ42 oligomers). It is not well-established that which Aβ42 state is most responsible for AD or why. We wanted to verify which effects Aβ42 oligomers and aggregated peptides have on gene expression, protein level and enzyme activity of insulin and amyloid precursor protein (APP) pathways in vitro. Human neuroblastoma cells (SH-SY5Y) were treated with varying concentrations of soluble and aggregated Aβ42. Treatment effects on β-secretase (BACE), glycogen synthase kinase 3α (GSK3α), glycogen synthase kinase 3β (GSK3β), phosphatidylinositol-3 kinase (PI-3K), insulin-degrading enzyme (IDE), insulin-receptor substrate 1 (IRS1), insulin receptor (INSR) and monoamine oxidase B (MAO-B) were investigated via quantitative-PCR, western blot, ELISA and enzyme activity assay. We could find different effects of soluble and aggregated peptides especially on gene/protein expression of GSK3β and INSR and on GSK3β and MAO-B activity. Soluble peptides showed significant effects leading to increased gene expression and protein amount of GSK3β and to decreased level of gene and protein expression of INSR. MAO-B activity was enhanced after treatment with aggregated peptides and strongly inhibited after soluble Aβ42 treatment. Our data might provide insights into selective effects of specific forms of Aβ42 aggregates in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balaraman Y, Limaye AR, Levey AI, Srinivasan S (2006) Glycogen synthase kinase 3beta and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Barnes DE, Covinsky KE, Whitmer RA, Kuller LH, Lopez OL, Yaffe K (2010) Commentary on “Developing a national strategy to prevent dementia: Leon Thal Symposium 2009.” Dementia risk indices: a framework for identifying individuals with a high dementia risk. Alzheimers Dement 6:138–141

    Article  PubMed  Google Scholar 

  • Bartl J, Monoranu CM, Wagner AK, Kolter J, Riederer P, Grunblatt E (2012) Alzheimer’s disease and type 2 diabetes: two diseases, one common link? World J Biol Psychiatry

  • Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357

    Article  PubMed  CAS  Google Scholar 

  • Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757

    PubMed  CAS  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  PubMed  CAS  Google Scholar 

  • Crouch PJ, Harding SM, White AR, Camakaris J, Bush AI, Masters CL (2008) Mechanisms of A beta mediated neurodegeneration in Alzheimer’s disease. Int J Biochem Cell Biol 40:181–198

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29:1334–1347

    Article  PubMed  Google Scholar 

  • de la Monte SM, Longato L, Tong M, Wands JR (2009) Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs 10:1049–1060

    PubMed  Google Scholar 

  • Ghosh AK, Brindisi M, Tang J (2011) Developing beta-secretase inhibitors for treatment of Alzheimer’s disease. J Neurochem 120(Suppl 1):71–83

    PubMed  Google Scholar 

  • Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643

    Article  PubMed  CAS  Google Scholar 

  • Gotz ME, Fischer P, Gsell W, Riederer P, Streifler M, Simanyi M, Muller F, Danielczyk W (1998) Platelet monoamine oxidase B activity in dementia: a 4-year follow-up. Dement Geriatr Cogn Disord 9:74–77

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E et al (2005) Oxidative stress related markers in the “VITA” and the centenarian projects. Neurobiol Aging 26:429–438

    Article  PubMed  Google Scholar 

  • Grünblatt E, Bartl J, Riederer P (2010) The link between iron, metabolic syndrome, and Alzheimer’s disease. J Neural Transm 118:371–379

    Article  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  • Hernandez F, Avila J (2008) The role of glycogen synthase kinase 3 in the early stages of Alzheimers’ disease. FEBS Lett 582:3848–3854

    Article  PubMed  CAS  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Muller D, Plaschke K (1994) Desensitization of brain insulin receptor. Effect on glucose/energy and related metabolism. J Neural Transm Suppl 44:259–268

    PubMed  CAS  Google Scholar 

  • Isik AT (2010) Late onset Alzheimer’s disease in older people. Clin Interv Aging 5:307–311

    Article  PubMed  Google Scholar 

  • Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, Masliah E (2008) Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res 86:3265–3274

    Article  PubMed  CAS  Google Scholar 

  • Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ, Anwyl R, Walsh DM, Rowan MJ (2008) Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28:4231–4237

    Article  PubMed  CAS  Google Scholar 

  • Lesne S, Gabriel C, Nelson DA, White E, Mackenzie ET, Vivien D, Buisson A (2005) Akt-dependent expression of NAIP-1 protects neurons against amyloid-{beta} toxicity. J Biol Chem 280:24941–24947

    Article  PubMed  CAS  Google Scholar 

  • Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a006338

  • Mukherjee A, Song E, Kihiko-Ehmann M, Goodman JP Jr, Pyrek JS, Estus S, Hersh LB (2000) Insulysin hydrolyzes amyloid beta peptides to products that are neither neurotoxic nor deposit on amyloid plaques. J Neurosci 20:8745–8749

    PubMed  CAS  Google Scholar 

  • Muller UC, Zheng H (2012) Physiological functions of APP family proteins. Cold Spring Harb Perspect Med 2:a006288

    PubMed  Google Scholar 

  • Munch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA, Perry G, Riederer P (1998) Alzheimer’s disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105:439–461

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Danielczyk W, Grunblatt E (2004) Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 25:271–277

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Bartl J, Laux G, Grunblatt E (2010) Diabetes type II: a risk factor for depression-Parkinson–Alzheimer? Neurotox Res 19:253–265

    Article  PubMed  Google Scholar 

  • Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71:741–747

    PubMed  CAS  Google Scholar 

  • Saura J, Andres N, Andrade C, Ojuel J, Eriksson K, Mahy N (1997) Biphasic and region-specific MAO-B response to aging in normal human brain. Neurobiol Aging 18:497–507

    Article  PubMed  CAS  Google Scholar 

  • Schindowski K, Belarbi K, Buee L (2008) Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 7(Suppl 1):43–56

    PubMed  CAS  Google Scholar 

  • Sebollela A, Freitas-Correa L, Oliveira FF, Paula-Lima AC, Saraiva LM, Martins SM, Mota LD, Torres C, Alves-Leon S, de Souza JM, Carraro DM, Brentani H, De Felice FG, Ferreira ST (2012) Amyloid-beta oligomers induce differential gene expression in adult human brain slices. J Biol Chem 287:7436–7445

    Article  PubMed  CAS  Google Scholar 

  • Small DH (2004) Mechanisms of synaptic homeostasis in Alzheimer’s disease. Curr Alzheimer Res 1:27–32

    Article  PubMed  CAS  Google Scholar 

  • Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • Wang DS, Dickson DW, Malter JS (2008) Tissue transglutaminase, protein cross-linking and Alzheimer’s disease: review and views. Int J Clin Exp Pathol 1:5–18

    PubMed  CAS  Google Scholar 

  • Zhang Y, Hong Y, Bounhar Y, Blacker M, Roucou X, Tounekti O, Vereker E, Bowers WJ, Federoff HJ, Goodyer CG, LeBlanc A (2003) p75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 23:7385–7394

    PubMed  CAS  Google Scholar 

  • Zhao WQ, Lacor PN, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2009) Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J Biol Chem 284:18742–18753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was partially provided by the “Alzheimer Forschungs Initiative (AFI)”, Düsseldorf, Germany; the AFI had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report and in the decision to submit the paper for publication. We thank Miryame Hofmann for her excellent technical assistance and also Dr. Zoya Marinova for her great and excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Bartl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1 (PDF 51 kb)

Supplementary figure 2 (PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartl, J., Meyer, A., Brendler, S. et al. Different effects of soluble and aggregated amyloid β42 on gene/protein expression and enzyme activity involved in insulin and APP pathways. J Neural Transm 120, 113–120 (2013). https://doi.org/10.1007/s00702-012-0852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0852-5

Keywords

Navigation