Skip to main content

Monitoring Extracellular Molecules in Neuroscience by In Vivo Electrochemistry: Methodological Considerations and Biological Applications

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

Abstract

Brain neuronal communication occurs by the exocytotic release of neurotransmitters into synaptic clefts and the surrounding extracellular fluid. Before the 1970s, radioimmunoassay was the only available technique with the requisite sensitivity to measure the small chemical concentrations produced by neurotransmitter release. More than 40 years ago, Ralph Adams and his colleagues saw the value of electrochemical methods for the study of oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are used in a wide variety of applications, ranging from the resolution of single exocytotic events from single cells to monitoring neurochemical fluctuations in awake, behaving animals.

This chapter provides a basic overview of the principles underlying voltammetric and amperometric methods, the most commonly used electrochemical techniques, and the general application of these methods to the study of neurotransmission, including those developments performed in the author’s laboratory, giving examples of experiments using these methods. The first part of the chapter is dedicated to slow voltammetric methods and the improvement developed by our group to overcome its technical limitations. It follows a description of rapid methods developed, by our group, to monitor the monoamines overflow evoked by electrical stimulations of the medial forebrain bundle, such as fast scan cyclic voltammetry and fast differential multi-pulse amperometry.

Furthermore, we discuss how to modify a carbon-fiber electrode to build a selective microsensor for in vivo measurement of nitric oxide. In the second part of the chapter, we highlight several applications of the described methods, with particular emphasis on the advantages and drawbacks of methods described in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawley MD, Tatawawadi SV, Piekarski S, Adams RN (1967) Electrochemical studies of the oxidation pathways of catecholamines. J Am Chem Soc 89:447–450

    Article  CAS  PubMed  Google Scholar 

  2. Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue a new neurophysiological measurement. Brain Res 55:209–213

    Article  CAS  PubMed  Google Scholar 

  3. Adams RN (1976) Probing brain chemistry with electroanalytical techniques. Anal Chem 48:1126A–1138A

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong-James M, Millar J (1979) Carbon fibre microelectrodes. J Neurosci Methods 3:279–287

    Article  Google Scholar 

  5. Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? Nature 286:902–904

    Article  CAS  PubMed  Google Scholar 

  6. Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1981) Voltammetry in the striatum of chronic freely moving rats: detection of catechols and ascorbic acid. Brain Res 223:69–80

    Article  CAS  PubMed  Google Scholar 

  7. Gerhardt GA, Oke AF, Nagy G, Moghaddam B, Adams RN (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–395

    Article  CAS  PubMed  Google Scholar 

  8. Mueller K (1986) In vivo voltammetric recording with nafion-coated carbon paste electrodes: additional evidence that ascorbic acid release is monitored. Pharmacol Biochem Behav 25:325–328

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez-Mora JL, Sanchez-Bruno JA, Mas M (1988) Concurrent on-line analysis of striatal ascorbate, dopamine and dihydroxyphenylacetic acid concentrations by in vivo voltammetry. Neurosci Lett 86:61–66

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Mora JL, Guadalupe T, Fumero B, Mas M (1991) Mathematical resolution of mixed in vivo voltammetry signals. Models, equipment, assessment by simultaneous microdialysis sampling. J Neurosci Methods 39:231–244

    Article  CAS  PubMed  Google Scholar 

  11. Suaud-Chagny MF, Cespuglio R, Rivot JP, Buda M, Gonon F (1993) High sensitivity measurement of brain catechols and indoles in vivo using electrochemically treated carbon-fiber electrodes. J Neurosci Methods 48:241–250, Review

    Article  CAS  PubMed  Google Scholar 

  12. Refshauge C, Kissinger PT, Dreiling R, Blank L, Freeman R, Adams RN (1974) New high performance liquid chromatographic analysis of brain catecholamines. Life Sci 14:311–322

    Article  CAS  PubMed  Google Scholar 

  13. Wightman RM, Strope E, Plotsky PM, Adams RN (1976) Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation. Nature 262:145–146

    Article  CAS  PubMed  Google Scholar 

  14. Salamone JD, Lindsay WS, Neill DB, Justice JB (1982) Behavioral observation and intracerebral electrochemical recording following administration of amphetamine in rats. Pharmacol Biochem Behav 17:445–450

    Article  CAS  PubMed  Google Scholar 

  15. Gonon F, Cespuglio R, Ponchon JL, Buda M, Jouvet M, Adams RN, Pujol JF (1978) In vivo continuous electrochemical determination of dopamine release in rat neostriatum. C R Acad Sci Hebd Seances Acad Sci D 286:1203–1206

    CAS  PubMed  Google Scholar 

  16. Guadalupe T, Gonzalez-Mora JL, Fumero B, Mas M (1993) Votammetric monitoring of brain extracellular levels of serotonin, 5-hydroxyindoleacetic acid and uric acid as assessed by simultaneous microdialysis. J Neurosci Methods 45:159–164

    Article  Google Scholar 

  17. González-Mora JL, Fernandez-Vera R (1994) New methodological developments. Simultaneous real-time measurements of dopamine and serotonin levels: new methodological developments. In: Louilot A, Durkin T, Spampinato U, Cador M (eds) Monitoring molecules in neuroscience. INSERM, Bordeaux, pp 1–3

    Google Scholar 

  18. Stamford JA, Kruk ZL, Millar J, Wightman RM (1984) Striatal dopamine uptake in the rat: in vivo analysis by fast cyclic voltammetry. Neurosci Lett 51:133–138

    Article  CAS  PubMed  Google Scholar 

  19. Wightman RM (2006) Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science 311:1570–1574

    Article  CAS  PubMed  Google Scholar 

  20. Millar J, Stamford JA, Kruk ZL, Wightman RM (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur J Pharmacol 109:341–348

    Article  CAS  PubMed  Google Scholar 

  21. González-Mora JL, Kruk ZL (1994) New methodological developments. Numerical separation of monoamine mixtures: analysis of FCV data. In: Louilot A, Durkin T, Spampinato U, Cador M (eds) Monitoring molecules in neuroscience. INSERM, Bordeaux

    Google Scholar 

  22. Kruk ZL, Armstrong-James M, Millar J (1980) Measurement of the concentration of 5-hydroxytryptamine ejected during iontophoresis using multibarrel carbon fibre microelectrodes. Life Sci 27:2093–2098

    Article  CAS  PubMed  Google Scholar 

  23. Millar J, Williams GV (1988) Ultra-low noise silver-plated carbon fibre microelectrodes. J Neurosci Methods 25:59–62

    Article  CAS  PubMed  Google Scholar 

  24. Heien ML, Johnson MA, Wightman RM (2004) Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal Chem 76:5697–5704

    Article  CAS  PubMed  Google Scholar 

  25. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373

    Article  CAS  PubMed  Google Scholar 

  26. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  27. Malinski T, Bailey F, Zhang ZG, Chopp M (1993) Nitric oxide measured by a porphyrinic microsensor after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 13:355–358

    Article  CAS  PubMed  Google Scholar 

  28. Mendez A, Fernandez M, Barrios Y, Lopez-Coviella I, Gonzalez-Mora JL, Del Rivero M, Salido E, Bosch J, Quintero E (1997) Constitutive NOS isoforms account for gastric mucosal NO overproduction in uremic rats. Am J Physiol 272:G894–G901

    CAS  PubMed  Google Scholar 

  29. Gonzalez-Mora JL, Mendez A, Rivero M, Quintero E (1996) In vivo monitoring of NO release from the gastric mucosa by a porphyrinic-based microsensor. In: González-Mora JL, Borges R, Mas M (eds) Monitoring molecules in neuroscience. Universidad of La Laguna, Publications Service, La Laguna (Tenerife, Spain), pp 214–215, ISBN: 84-7756-445-0

    Google Scholar 

  30. Salom MG, Arregui B, Carbonell LF, Ruiz F, González-Mora JL, Fenoy FJ (2005) Renal ischemia induces an increase in nitric oxide levels from tissue stores. Am J Physiol Regul Integr Comp Physiol 12(289):R1459–R1466

    Article  Google Scholar 

  31. Escrig A, Marin R, Abreu P, Gonzalez-Mora JL, Mas M (2002) Changes in mating behavior, erectile function, and nitric oxide levels in penile corpora cavernosa in streptozotocin-diabetic rats. Biol Reprod 66:185–189

    Article  CAS  PubMed  Google Scholar 

  32. Escrig A, Gonzalez-Mora JL, Mas M (1999) Nitric oxide release in penile corpora cavernosa in a rat model of erection. J Physiol 516:261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mas M, Escrig A, Gonzalez-Mora JL (2002) In vivo electrochemical measurement of nitric oxide in corpus cavernosum penis. J Neurosci Methods 119:143–150

    Article  CAS  PubMed  Google Scholar 

  34. Mermet C, Gonon FG, Stjarne L (1990) On-line electrochemical monitoring of the local noradrenaline release evoked by electrical stimulation of the sympathetic nerves in isolated rat tail artery. Acta Physiol Scand 140:323–329

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez M, Gonzalez S, Morales I, Sabate M, Gonzalez-Hernandez T, Gonzalez-Mora JL (2007) Nigrostriatal cell firing action on the dopamine transporter. Eur J Neurosci 25:2755–2765. doi:10.1111/j.1460-9568.2007.05510.x

    Article  PubMed  Google Scholar 

  36. Kawagoe KT, Jankowski JA, Wightman RM (1991) Etched carbon-fiber electrodes as amperometric detectors of catecholamine secretion from isolated biological cells. Anal Chem 63:1589–1594

    Article  CAS  PubMed  Google Scholar 

  37. González-Mora JL, Morales I, Merino C, Casanova O, Rodriguez M (2006) Interference on dopamine recordings by pH transients: amperometry versus fast cyclic voltammetry. In: Di Chiara G, Carboni E, Valentini V, Acquas E, Bassereo V, Cadoni C (eds) Monitoring molecules in neuroscience. University of Cagliari, Cagliari, pp 98–101

    Google Scholar 

  38. Petrinec J, Guadalupe T, Fumero B, Viejo E, Gonzalez-Mora JL, Mas M (1996) Effects of different anaesthetics on striatal dopaminergic activity as assessed by in vivo voltammetry. In: González-Mora JL, Borges R, Mas M (eds) Monitoring molecules in neuroscience. Universidad of LaLaguna, Publications Service, La Laguna (Tenerife, Spain), pp 294–295, ISBN: 84-7756-445-0

    Google Scholar 

  39. Mas M, Gonzalez-Mora JL, Mas M, Gonzalez-Mora JL (1996) Monitoring brain neurotransmitter release during sociosexual interactions. In: González-Mora JL, Borges R, Mas M (eds) Monitoring molecules in neuroscience. Universidad of La Laguna, Publications Service, La Laguna (Tenerife, Spain), pp 309–310, ISBN: 84-7756-445-0

    Google Scholar 

  40. Marinesco S, Gonzalez-Mora JL, Jouvet M, Cespuglio R (1996) Interest of thermal-annealed Naflon films for electrochemical detection of serotonin in vivo. In: González-Mora JL, Borges R, Mas M (eds) Monitoring molecules in Neuroscience. Universidad of La Laguna, Publications Service, La Laguna (Tenerife, Spain), pp 4–5, ISBN: 84-7756-445-0

    Google Scholar 

  41. Gonzalez-Mora JL, Guadalupe T, Perez de la Cruz MA, Gonzalez Hernandez T (1996) Anomalous correlation between regional distribution of nitric oxide synthase activity and extracellular concentration of nitric oxide in brain tissues. In: González-Mora JL, Borges R, Mas M (eds) Monitoring molecules in neuroscience. Universidad of La Laguna, Publications Service, La Laguna (Tenerife, Spain), pp 215–216. ISBN: 84-7756-445-0

    Google Scholar 

  42. Rodriguez VD, Hernandez S, Gonzalez-Mora JL (1996) Dynamic changes in cerebral oxygenation coupled to neuronal activity measured by near infrared spectroscopy and in vivo voltammetry. In: González-Mora JL, Borges R, Mas M (eds) Monitoring molecules in neuroscience. Universidad of La Laguna, Publications Service, La Laguna (Tenerife, Spain), pp 40–41, ISBN: 84-7756-445-0

    Google Scholar 

  43. Louilot A, Guadalupe T, Mas M, Gonzalez-Mora JL (1991) Exposure to receptive female odors selectively increases dopamine release in the nucleus accumbens of naive male rats. In: Rollema H, Westerink BHC, Drijfhout WJ (eds) Monitoring molecules in neuroscience. University Centre for Pharmacy, Groningen, The Netherlands, pp 219–221, ISBN 90-9004425-6

    Google Scholar 

  44. Guadalupe T, Gonzalez-Mora JL, Fumero B, Mas M (1991) Methodological developments for the resolution of DNPV indoleamine/uric acid peak. In: Rollema H, Westerink BHC, Drijfhout WJ (eds) Monitoring molecules in neuroscience. University Centre for Pharmacy, Groningen, The Netherlands, pp 256–258, ISBN 90-9004425-6

    Google Scholar 

  45. González-Mora JL, Guadalupe T, Fumero B, Mas M (1991) Voltammetric monitoring of microdialysis-induced perturbation of brain extracellular environment. In: Rollema H, Westerink BHC, Drijfhout WJ (eds) Monitoring molecules in neuroscience. University Centre for Pharmacy, Groningen, The Netherlands., pp 66–68. ISBN: 90-9004425-6

    Google Scholar 

  46. Martín FA, Rojas-Díaz D, Luis-García MA, González-Mora JL, Castellano MA (2005) Simultaneous monitoring of nitric oxide, oxyhemoglobin and deoxyhemoglobin from small areas of the rat brain by in vivo visible spectroscopy and a least-square approach. J Neurosci Methods 140:75–80. doi:10.1016/j.jneumeth.2004.04.036

  47. Castellano MA, Rojas-Díaz D, Martín F, Quintero M, Alonso J, Navarro E, González-Mora JL (2001) Opposite effects of low and high doses of arginine on glutamate-induced nitric oxide formation in rat substantia nigra. Neurosci Lett 314:127–130. doi:10.1016/S0304-3940(01)02295-9

    Article  CAS  PubMed  Google Scholar 

  48. Mas M, Gonzalez-Mora JL, Hernandez L (1996) In vivo monitoring of brain neurotransmitter release for the assessment of neuroendocrine interactions. Cell Mol Neurobiol 16:383–396. doi:10.1007/BF02088102

    Article  CAS  PubMed  Google Scholar 

  49. Mas M, Fumero B, González-Mora JL (1995) Voltammetric and microdialysis monitoring of brain monoamine neurotransmitter release during sociosexual interactions. Behav Brain Res 71:69–79. doi:10.1016/0166-4328(95)00043-7

    Article  CAS  PubMed  Google Scholar 

  50. Louilot A, Gonzalez-Mora JL, Guadalupe T, Mas M (1991) Sex-related olfactory stimuli induce a selective increase in dopamine release in the nucleus accumbens of male rats. A voltammetric study. Brain Res 553:313–317. doi:10.1016/0006-8993(91)90841-I

    Article  CAS  PubMed  Google Scholar 

  51. Gonzalez-Mora JL, Guadalupe T, Mas M (1990) In vivo voltammetry study of the modulatory action of prolactin on the mesolimbic dopaminergic system. Brain Res Bull 25:729–733. doi:10.1016/0361-9230(90)90050-A

    Article  CAS  PubMed  Google Scholar 

  52. Mas M, Gonzalez-Mora JL, Louilot A, Solé C, Guadalupe T (1990) Increased dopamine release in the nucleus accumbens of copulating male rats as evidenced by in vivo voltammetry. Neurosci Lett 110:303–308. doi:10.1016/0304-3940(90)90864-6

    Article  CAS  PubMed  Google Scholar 

  53. Gonzalez-Mora JL, Maidment NT, Guadalupe T, Mas M (1989) Post-mortem dopamine dynamics assessed by voltammetry and microdialysis. Brain Res Bull 23:323–327. doi:10.1016/0361-9230(89)90216-5

    Article  CAS  PubMed  Google Scholar 

  54. Rodríguez M, Morales I, González-Mora JL, Gómez I, Sabaté M, Dopico JG, Rodríguez-Oroz MC, Obeso JA (2007) Different levodopa actions on the extracellular dopamine pools in the rat striatum. Synapse 61:61–71. doi:10.1002/syn.20342

    Article  PubMed  Google Scholar 

  55. Rodriguez M, Morales I, Gomez I, Gonzalez S, Gonzalez-Hernandez T, Gonzalez-Mora JL (2006) Heterogeneous dopamine neurochemistry in the striatum: the fountain-drain matrix. J Pharmacol Exp Ther 319:31–43. doi:10.1124/jpet.106.104687

    Article  CAS  PubMed  Google Scholar 

  56. Buda M, Gonon F, Cespuglio R, Jouvet M, Pujol JF (1981) In vivo electrochemical detection of catechols in several dopaminergic brain regions of anaesthetized rats. Eur J Pharmacol 73:61–68

    Article  CAS  PubMed  Google Scholar 

  57. Cespuglio R, Faradji H, Riou F, Buda M, Gonon F, Pujol JF, Jouvet M (1981) Differential pulse voltammetry in brain tissue. II. Detection of 5-hydroxyindoleacetic acid in the rat striatum. Brain Res 223:299–311

    Article  CAS  PubMed  Google Scholar 

  58. Rivot JP, Noret E, Ory-Lavollee L, Besson JM (1987) In vivo electrochemical detection of 5-hydroxyindoles in the dorsal horn of the spinal cord: the contribution of uric acid to the voltammograms. Brain Res 419:201–207

    Article  CAS  PubMed  Google Scholar 

  59. Louilot A, Serrano A, D’Angio M (1987) A novel carbon-fiber implantation assembly for cerebral voltammetric measurements in freely moving rats. Physiol Behav 41:227–231

    Article  CAS  PubMed  Google Scholar 

  60. Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678

    Article  CAS  PubMed  Google Scholar 

  61. Yao SJ, Xu W, Wolfson SK (1995) A micro carbon electrode for nitric oxide monitoring. ASAIO J 41:M404–M409

    Article  CAS  PubMed  Google Scholar 

  62. Kelm M, Dahmann R, Wink D, Feelisch M (1997) The nitric oxide/superoxide assay. Insights into the biological chemistry of the NO/O2 interaction. J Biol Chem 272:9922–9932

    Article  CAS  PubMed  Google Scholar 

  63. Hampl V, Walters CL, Archer SL (1996) Determination of nitric oxide by the chemiluminescence reaction with ozone. In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, New York, NY, 309: 18.536

    Google Scholar 

  64. Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34:401–427

    Article  CAS  PubMed  Google Scholar 

  65. Chesler M, Chen JC (1992) Alkaline extracellular pH shifts generated by two transmitter- dependent mechanisms. Can J Physiol Pharmacol 70(Suppl):S286–S292

    Article  CAS  PubMed  Google Scholar 

  66. Kraig RP, Ferreira-Filho CR, Nicholson C (1983) Alkaline and acid transients in cerebellar microenvironment. J Neurophysiol 49:831–850

    CAS  PubMed  Google Scholar 

  67. Urbanics R, Leniger-Follert E, Lubbers DW (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflugers Arch 378:47–53

    Article  CAS  PubMed  Google Scholar 

  68. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the grant INNPACTO-MINECO (IPT-2012-0961-300000), Ministerio de Ciencia e Innovación (TIN2011-28146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis González-Mora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

González-Mora, J.L., Salazar, P., Martín, M., Mas, M. (2017). Monitoring Extracellular Molecules in Neuroscience by In Vivo Electrochemistry: Methodological Considerations and Biological Applications. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics