Skip to main content
Log in

In vivo monitoring of brain neurotransmitter release for the assessment of neuroendocrine interactions

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. The neurotransmitter mechanisms regulating neuroendocrine processes have been traditionally inferred from the effects of drugs purportedly acting through specific transmitter systems. The direct appraisal of changes in endogenous neuromediators had to rely initially on analyses of brain samples obtained post-morten.

2. Currently, a more physiological assessment is available through the monitoring ot the extracellular levels of neurotransmitters and their metabolites in discrete brain areas of living animals. Two methodologies, namely in vivo voltammetry and microdialysis, are being increasingly used for this purpose. This article summarizes their principles, relative merits, and limitations and presents some relevant applications.

3. Thus, microdialysis data show a differential response in the amphetamine-induced dopamine release in the nucleus accumbens in adult male and female rats castrated prepuberally. Given their high time-resolution, in vivo electrochemistry techniques seem especially suited for studying the fast, non-genomic effects of steroid hormones. This is illustrated by the voltammetric detection of a rapid release of dopamine in the corpus striatum induced by progesterone in males.

4. These methodologies should be regarded as complementary tools for the assessment of the neurochemical correlates of neuroendocrine interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Castner, S. A., Xiao, L., Becker, J. B. (1993). Sex differences in striatal dopamine: in vivo microdialysis and behavioral studies.Brain Res. 610127–134.

    PubMed  Google Scholar 

  • Chen, J.-C., and Ramirez, V. D. (1988). In vivo dopaminergic activity from nucleus accumbens, substantia nigra and ventral tegmental area in the freely moving rat: basal neurochemical output and prolactin effect.Neuroendocrinology 48329–335.

    PubMed  Google Scholar 

  • Crespi, F., Paret, J., Keane, P. E., Moore, M., Coude, F. X., and Roncucci, R. (1985). Growth hormone-releasing factor modifies dopaminergic but not serotonergic activity in the arcuate nucleus of hypothalamus in the rat.Brain Res. 1985367–370.

    Google Scholar 

  • Di Paolo, T., Levesque, D., and Daigle, M. (1986). A physiological dose of progesterone affects rat striatum biogenic amine metabolism.Eur. J. Pharmacol. 12511–16.

    PubMed  Google Scholar 

  • Dluzen, D. E., and Ramirez, V. D. (1988). In vivo neurotransmitter levels in the anterior pituitary of freely behaving intact and castrated male rats determined with push-pull perfusion and high pressure liquid chromatography coupled with electrochemical detection.Endocrinology 1222861–2864.

    PubMed  Google Scholar 

  • Dluzen, D. E., and Ramirez, V. D. (1991). Modulatory effects of progesterone upon dopamine release from the corpus striatum of ovariectomized estrogen-treated rats are stereo-specific.Brain Res. 538176–179.

    PubMed  Google Scholar 

  • Egawa, M., Hoebel, B. G., and Stone, E. A. (1988). Use of microdialysis to measure brain noradrenergic receptor function in vivo.Brain Res. 458303–308.

    PubMed  Google Scholar 

  • Etgen, A. A., and Karkanias, G. B. (1994). Estrogen regulation of noradrenergic signaling in the hypothalamus.Psychoneuroendocrinology 19603–610.

    PubMed  Google Scholar 

  • Fabre-Nys, C., Blache, D., Hinton, M. R., Goode, J. A., and Kendrick, K. M. (1994). Microdialysis measurement of neurochemical changes in the mediobasal hypothalamus of ovariectomized ewes during oestrus.Brain Res. 649282–296.

    PubMed  Google Scholar 

  • Fumero, B., Fernandez-Vera, J. R., Gonzalez-Mora, J. L., and Mas, M. (1994a). Changes in monoamine turnover in forebrain areas associated with sexual behavior. A microdialysis study.Brain Res. 662233–239.

    PubMed  Google Scholar 

  • Fumero, B., Guadalupe, T., Valladares, F., Mora, F., O'Neill, R. D., Mas, M., and Gonzalez-Mora, J. L. (1994b). Fixed versus removable microdialysis probes for in vivo neurochemical analysis. Implications for behavioural studies.J. Neurochem. 631407–1415.

    PubMed  Google Scholar 

  • Fuxe, K., and Agnati, L. F. (eds.) (1991).Volume Transmission in the Brain Raven, New York.

    Google Scholar 

  • Gardner, E. L., Chen, J., and Paredes, W. (1993). Overview of chemical sampling techniques.J. Neurosci. Meth. 48173–197.

    Google Scholar 

  • Gayard, V., Malpaux, B., and Thiéry, J. C. (1992). Oestradiol increases the extracellular levels of amine metabolites in the ewe hypothalamus during anoestrus: A microdialysis study.J. Endocrinol. 135421–430.

    PubMed  Google Scholar 

  • Gonzalez-Mora, J. L., Sanchez-Bruno, J. A., and Mas, M. (1988). Concurrent on-line analysis of striatal ascorbate, dopamine, and dihydroxyphenylacetic acid concentrations by in vivo voltammetry.Neurosci. Lett. 8661–66.

    PubMed  Google Scholar 

  • Gonzalez-Mora, J. L., Maidment, N. T., Guadalupe, T., and Mas, M. (1989). Post-mortem dopamine dynamics assessed by voltammetry and microdialysis.Brain Res. Bull. 23323–327.

    PubMed  Google Scholar 

  • Gonzalez-Mora, J. L., Guadalupe, T., and Mas, M. (1990). In vivo voltammetry study of the modulatory action of prolactin on the mesolimbic dopaminergic system.Brain Res. Bull. 25729–733.

    PubMed  Google Scholar 

  • Gonzalez-Mora, J. L., Guadalupe, T., Fumero, B., and Mas, M. (1991). Mathematical resolution of mixed in vivo voltammetry signals. Models, equipment, assessment by simultaneous microdialysis sampling.J. Neurosci. Meth. 39231–244.

    Google Scholar 

  • Guadalupe, T., Gonzalez-Mora, J. L., Fumero, B., and Mas, M. (1992). Voltammetric monitoring of brain extracellular levels of serotonin, 5-hydroxyindoleacetic acid and uric acid assessed by simultaneous microdialysis.J. Neurosci. Meth. 45159–164.

    Google Scholar 

  • Häfner, H., Maurer, K., Löffler, W., and Riecher-Rössler, A. (1993). The influence of age and sex on the onset and early course of schizophrenia.Br. J. Psychiatr. 16280–86.

    Google Scholar 

  • Hernandez, L., Stanley, B. G., and Hoebel, B. G. (1986). A small, removable microdialysis probe.Life Sci. 392629–2637.

    PubMed  Google Scholar 

  • Hernandez, L., Gonzalez, L., Murzi, E., Páez, X., Gottberg, E., and Baptista, T. (1994). Testosterone modulates mesolimbic dopaminergic activity in male rats.Neurosci. Lett. 171172–174.

    PubMed  Google Scholar 

  • Hutson, P. H., and Suman-Chauhan, N. (1990). Activation of postsynaptic striatal dopamine receptors, monitored by efflux of cAMP in vivo.Neuropharmacology 291011–1016.

    PubMed  Google Scholar 

  • Imperato, A., Puglisi-Allegra, S., Casolini, P., and Angelucci, L. (1991). Changes in brain dopamine and acetylchlorine release during and following stresses are independent of the pituitary-adrenocortical axis.Brain Res. 538111–117.

    PubMed  Google Scholar 

  • Jarry, H., Hirsch, B., Leonhardt, S., and Wuttke, W. (1992). Amino acid neurotransmitter release in the preoptic area of rats during the positive feedback actions of estradiol on LH release.Neuroendocrinology 56133–140.

    PubMed  Google Scholar 

  • Kendrick, K. M., Fabre-Nys, C., Blache, D., Goode, J. A., and Broad, K. D. (1993). The role of oxytocin release in the mediobasal hypothalamus of the sheep in relation to female sexual receptivity.J. Neuroendocrinol. 513–21.

    PubMed  Google Scholar 

  • Kordon, C., Drouva, S. V., Martinez de la Escalera, G., and Weiner, R. L. (1994). Role of classic and peptide neuromediators in the neuroendocrine regulation of luteinizing hormone and prolactin. In Knobil, E., and Neill, J. D. (Eds.),The Physiology of Reproduction 2nd ed., Raven Press, New York, pp. 1621–1681.

    Google Scholar 

  • Louilot, A., Serrano, A., and D'Angio, M. (1987). A novel carbon fiber implantation assembly for cerebral voltammetric measurement in freely moving rats.Physiol. Behav. 41227–231.

    PubMed  Google Scholar 

  • Malinski, T., Bailey, F., Zhang, Z. G., and Chopp, M. (1993). Nitric oxide measured by a prophirinic microsensor in rat brain after transient middle cerebral artery occlusion.J. Neurochem. 13355–358.

    Google Scholar 

  • Mas, M., Gonzalez-Mora, J. L., Luoilot, A., Solé, C., and Guadalupe, T. (1990). Increased dopamine release in the nucleus accumbens of copulating male rats as evidenced by in vivo voltammetry.Neurosci. Lett. 110303–308.

    PubMed  Google Scholar 

  • Mas, M., Fumero, B., Perez-Rodriguez, I., and Gonzalez-Mora, J. L. (1995). The neurochemistry of sexual satiety. An experimental model of inhibited desire. In Bancroft, J. (Ed.),The Pharmacology of Sexual Function and Dysfunction Elsevier, Amsterdam, pp. 115–126.

    Google Scholar 

  • McCann, S. M., and Krulich, L. (1989). Role of transmitters in control of anterior pituitary hormone release. In DeGroot, L. J. (Ed.),Endocrinology Saunders, Philadelphia, pp. 117–130.

    Google Scholar 

  • Meisel, R. L., Camp, D. M., and Robinson, T. E. (1993). A microdialysis study of the ventral striatal dopamine during sexual behavior in female Syrian hamsters.Brian Res. 55151–157.

    Google Scholar 

  • Meyer, D. C., Holman, M., Connel, R., McRee, C., and Jacobs, M. (1990). In vivo 5-HIAA release from the anterior hypothalamus in the ovariectomized and estradiol treated rat following perfusion with progesterone.Neurochem. Res. 15805–813.

    PubMed  Google Scholar 

  • Moghaddam, B., Bolinao, M. L., Stein-Behrens, B., and Sapolsky, R. (1994). Glucocorticoids mediate the stress-induced e extracellular accumulation of glutamate.Brain Res. 655251–254.

    PubMed  Google Scholar 

  • Mohankumar, P. S., Thygarajan, S., and Quadri, S. K. (1994). Correlations of catecholamine release in the medial preoptic area with proestrous surges of luteinizing hormone and prolactin: Effects of aging.Endocrinology 135119–126.

    PubMed  Google Scholar 

  • Morelli, M., Carboni, E., Cozzolino, A., Tanda, G. L., Pinna, A., and Di Chiara, G. (1992). Combined microdialysis and Fos immunohistochemistry for the estimation of dopamine neurotransmission in the rat caudate-putamen.J. Neurochem. 591158–1160.

    PubMed  Google Scholar 

  • Ohta, K., Araki, N., Shibata, M., Hamada, J., Komatsumoto, S., Shimazu, K., and Fukuuchi, Y. (1994). A novel in vivo assay system for consecutive measurement of brain nitric oxide production combined with the microdialysis technique.Neurosci. Lett. 176165–168.

    PubMed  Google Scholar 

  • Ping, L., Mahesh, V. B., Wiedmeyer, V. T., and Brann, D. W. (1994). Release of glutamate and asparatate from the preoptic area during the progesterone-induced LH surge: In vivo microdialysis studies.Neuroendocrinology 59318–324.

    PubMed  Google Scholar 

  • Plotsky, P. M. (1987). Probing pathways of neuroendocrine regulation with voltammetric electrodes. In Justice, J. B. (Ed.),Voltammetry in the Neurosciences Humana Press, Clifton, NJ, pp. 273–309.

    Google Scholar 

  • Plotsky, P. M., and Neill, J. D. (1982). The decrease in hypothalamic dopamine secretion induced by suckling: Comparison of voltammetric and radioisotopic methods of measurement.Endocrinology 110691–696.

    PubMed  Google Scholar 

  • Rebec, G. V., and Pierce, R. C. (1994). A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission.Prog. Neurobiol. 43537–565.

    PubMed  Google Scholar 

  • Rubin, B. S., and Bridges, R. S. (1989). Alterations in luteinizing hormone-releasing hormone from the mediobasal hypothalamus of ovarectomized, steroid-primed middle-aged rats as measured by push-pull perfusion.Neuroendocrinology 49225–232.

    PubMed  Google Scholar 

  • Sarna, G. S., Obrenovitch, T. P., Matsumoto, T., and Curzon, G. (1990). Effect of transient cerebral ischemia and cardiac arrest on brain extracellular dopamine and serotonin as determined by in vivo dialysis in the rat.J. Neurochem. 55937–940.

    PubMed  Google Scholar 

  • Shimizu, H., and Bray, G. A. (1993). Effects of castration, estrogen replacement and estrus cycle on monoamine metabolism in the nucleus accumbens, measured by microdialysis.Brain Res. 621200–206.

    PubMed  Google Scholar 

  • Suaud-Chagny, M. F., Cespuglio, R., Rivot, J. P., Buda, M., and Gonon, F. (1993). Hith sensitivity measurements of brain catechols and indoles using electrochemically treated carbon-fiber electrodes.J. Neurosci. Meth. 48241–250.

    Google Scholar 

  • Subesma, H., Schipper, J., Molewijk, H. E., Bosch, A. I., and De Kloet, E. R. (1991). 8-Hydroxy-2-(di-N-propylamino)tetralin increases the activity of adenylate cyclase in the hippocampus of freely-moving rats.Neuropharmacology 30967–975.

    PubMed  Google Scholar 

  • Thompson, T. L., and Moss, R. L. (1994). Estrogen regulation of dopamine release in the nucleus accumbens: Genomic- and nongenomic-mediated effects.J. Neurochem. 621750–1756.

    PubMed  Google Scholar 

  • Urbanski, H. F., Pickle, R. L., and Ramirez, V. D. (1988). Simultaneous measurement of gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone in the orchidectomized rat.Endocrinology 123413–419.

    PubMed  Google Scholar 

  • Vathy, I., and Etgen, A. M. (1989). Hormonal activation of female sexual behavior is accompanied by hypothalamic norepinephrine release.J. Neuroendocrinol. 1383–388.

    Google Scholar 

  • Xiao, L., and Becker, J. B. (1994). Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: effects of estrous cycle and gonadectomy.Neurosci. Lett. 180155–158.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mas, M., Gonzalez-Mora, J.L. & Hernandez, L. In vivo monitoring of brain neurotransmitter release for the assessment of neuroendocrine interactions. Cell Mol Neurobiol 16, 383–396 (1996). https://doi.org/10.1007/BF02088102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088102

Key words

Navigation