Skip to main content

Chromosome Conformation Capture in Primary Human Cells

  • Protocol
  • First Online:
Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1480))

Abstract

3D organization of the genome, its structural and regulatory function of cell identity, is acquiring prominent features in epigenetics studies; more efforts have been done to develop techniques that allow studying nuclear structure. Chromosome conformation capture (3C) has been set up in 2002 from Dekker and from that moment great investments were made to develop genomics variants of 3C technology (4C, 5C, Hi-C) providing new tools to investigate the shape of the genome in a more systematic and unbiased manner. 3C method allows scientists to fix dynamic and variable 3D interactions in nuclear space, and consequently to study which sequences interact, how a gene is regulated by different and distant enhancer, or how a set of enhancer could regulate transcriptional units; to follow the conformation that mediates regulation change in development; and to evaluate if this fine epigenetic mechanism is impaired in disease condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Laat W, Dekker J (2012) 3C-based technologies to study the shape of the genome. Methods 58(3):189–191. doi:10.1016/j.ymeth.2012.11.005

    Article  PubMed  Google Scholar 

  2. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. doi:10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  3. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465

    Article  CAS  PubMed  Google Scholar 

  4. Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194. doi:10.1038/ng1244

    Article  CAS  PubMed  Google Scholar 

  5. Dekker J (2006) The three ‘C’ s of chromosome conformation capture: controls, controls, controls. Nat Methods 3(1):17–21. doi:10.1038/nmeth823

    Article  CAS  PubMed  Google Scholar 

  6. Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413. doi:10.1016/j.cell.2006.06.035

    Article  CAS  PubMed  Google Scholar 

  7. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645. doi:10.1038/nature03574

    Article  CAS  PubMed  Google Scholar 

  8. Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103(28):10684–10689. doi:10.1073/pnas.0600326103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9(10):1167–1174. doi:10.1038/ncb1637

    Article  CAS  PubMed  Google Scholar 

  10. Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311(5764):1149–1152. doi:10.1126/science.1122984

    Article  CAS  PubMed  Google Scholar 

  11. Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Eils R, Heard E (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8(3):293–299. doi:10.1038/ncb1365

    Article  CAS  PubMed  Google Scholar 

  12. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82(19):6470–6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11(2):205–214. doi:10.1006/meth.1996.0407

    Article  CAS  PubMed  Google Scholar 

  14. Jackson V (1999) Formaldehyde cross-linking for studying nucleosomal dynamics. Methods 17(2):125–139. doi:10.1006/meth.1998.0724

    Article  CAS  PubMed  Google Scholar 

  15. Splinter E, Grosveld F, de Laat W (2004) 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol 375:493–507

    Article  CAS  PubMed  Google Scholar 

  16. Simonis M, Kooren J, de Laat W (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4(11):895–901. doi:10.1038/nmeth1114

    Article  CAS  PubMed  Google Scholar 

  17. Hagege H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forne T (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2(7):1722–1733. doi:10.1038/nprot.2007.243

    Article  CAS  PubMed  Google Scholar 

  18. Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20(17):2349–2354. doi:10.1101/gad.399506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wurtele H, Chartrand P (2006) Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res 14(5):477–495. doi:10.1007/s10577-006-1075-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Bodega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cortesi, A., Bodega, B. (2016). Chromosome Conformation Capture in Primary Human Cells. In: Lanzuolo, C., Bodega, B. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 1480. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6380-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6380-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6378-2

  • Online ISBN: 978-1-4939-6380-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics