Skip to main content
Log in

Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Spatial proximity between genomic loci can play important roles in their function and regulation. We have developed an open-ended method based on Chromosome Conformation Capture technology allowing us to perform genome-wide scanning of the loci that form the spatial environment of a given locus at a given time. As a proof of principle we present the use of this methodology to investigate the dynamics of the spatial environment of the HoxB1 gene before and after the induction of its expression in mouse embryonic stem cells. Our results indicate that the HoxB1 locus' immediate spatial environment can be divided roughly into three parts: a first part is represented by a domain of immediate proximity on each side of the HoxB1 locus covering approximately 110 kb, a second part extends to a domain of 800 kb and a third part consists of distal intra-chromosomal and inter-chromosomal interactions. Consistent with FISH studies showing the decondensation and repositioning of HoxB1 outside of its chromosomal territory during its expression, the proportion of inter-chromosomal interactions between HoxB1 and the rest of the genome increases after its induction, while interactions with distal intra-chromosomal loci become less frequent. These results indicate that this technique can be used to determine the dynamics of loci interactions on a genome-wide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bel-Vialar S, Itasaki N, Krumlauf R (2002) Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129: 5103–5115.

    PubMed  CAS  Google Scholar 

  • Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32: 623–623.

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18: 1119–1130.

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA (2005) Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132: 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12: 439–445.

    Article  PubMed  CAS  Google Scholar 

  • Cornforth MN, Greulich-Bode KM, Loucas BD et al. (2002) Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol 159: 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295: 1306–1311.

    Article  PubMed  CAS  Google Scholar 

  • de Laat W, Grosveld F (2003) Spatial organization of gene expression: the active chromatin hub. Chromosome Res 11: 447–459.

    Article  PubMed  Google Scholar 

  • Dietzel S, Jauch A, Kienle D et al. (1998) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM (2002) Visualizing chromatin dynamics in interphase nuclei. Science 296: 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  • Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112: 751–764.

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Chen SW, Gudas LJ (2002) Analysis of two distinct retinoic acid response elements in the homeobox gene Hoxb1 in transgenic mice. Dev Dyn 223: 353–370.

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280: 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002a) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157: 579–589.

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002b) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159: 753–763.

    Article  PubMed  CAS  Google Scholar 

  • Marshall H, Morrison A, Studer M, Popperl H, Krumlauf R (1996) Retinoids and Hox genes. FASEB J 10: 969–978.

    PubMed  CAS  Google Scholar 

  • Marshall WF, Straight A, Marko JF et al. (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7: 930–939.

    Article  PubMed  CAS  Google Scholar 

  • Münkel C, Eils R, Dietzel S et al. (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 285: 1053–1065.

    Article  PubMed  Google Scholar 

  • Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee H (1999) Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J Cell Sci 112: 525–535.

    PubMed  CAS  Google Scholar 

  • Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290: 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36: 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  • Palstra R-J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The B-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35: 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5: R44.

    Article  PubMed  Google Scholar 

  • Patrinos GP, de Krom M, de Boer E et al. (2004) Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev 18: 1495–1509.

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11: 513–525.

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16: 276–277.

    Article  PubMed  CAS  Google Scholar 

  • Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34: 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE (1995) A random-walk/giant loop model for interphase chromosomes. Proc Natl Acad Sci USA 92: 2710–2714.

    Article  PubMed  CAS  Google Scholar 

  • Stadler S, Schnapp V, Mayer R et al. (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5: 44.

    Article  PubMed  Google Scholar 

  • Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10: 1453–1465.

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147: 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al. (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113: 1565–1576.

    PubMed  CAS  Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160: 685–697.

    Article  PubMed  CAS  Google Scholar 

  • Yokota H, van den Engh G, Hearst JE, Sachs RK, Trask BJ (1995) Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol 130: 1239–1249.

    Article  PubMed  CAS  Google Scholar 

  • Yokota H, Singer J, van den Engh GJ, Trask BJ (1997) Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei. Chromosome Res 5: 157–166.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Chartrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Würtele, H., Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res 14, 477–495 (2006). https://doi.org/10.1007/s10577-006-1075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1075-0

Key words

Navigation