Skip to main content

Development of Antibody-Based Vaccines Targeting the Tumor Vasculature

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1403))

  • 6615 Accesses

Abstract

A functional vasculature is essential for tumor progression and malignant cell metastasis. Endothelial cells lining blood vessels in the tumor are exposed to a unique microenvironment, which in turn induces expression of specific proteins designated as tumor endothelial markers (TEMs). TEMs either localized at the plasma membrane or secreted into the extracellular matrix are accessible for antibody targeting, which can be either infused or generated de novo via vaccination.

Recent studies have demonstrated vaccines against several TEMs can induce a strong antibody response accompanied by a potent antitumor effect in animal models. These findings present an exciting field for novel anticancer therapy development. As most of the TEMs are self-antigens, breaking tolerance is necessary for a successful vaccine. This chapter describes approaches to efficiently induce a robust antibody response against the tumor vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dachs GU, Chaplin DJ (1998) Microenvironmental control of gene expression: implications for tumor angiogenesis, progression, and metastasis. Semin Radiat Oncol 8:208–216

    Article  CAS  PubMed  Google Scholar 

  2. Zhuang X, Cross D, Heath VL, Bicknell R (2011) Shear stress, tip cells and regulators of endothelial migration. Biochem Soc Trans 39:1571–1575

    Article  CAS  PubMed  Google Scholar 

  3. Matejuk A, Leng Q, Chou ST, Mixson AJ (2011) Vaccines targeting the neovasculature of tumors. Vasc Cell 3:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Los M, Roodhart JM, Voest EE (2007) Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. Oncologist 12:443–450

    Article  CAS  PubMed  Google Scholar 

  5. Ridolfi L, Petrini M, Fiammenghi L, Riccobon A, Ridolfi R (2009) Human embryo immune escape mechanisms rediscovered by the tumor. Immunobiology 214:61–76

    Article  CAS  PubMed  Google Scholar 

  6. Haller BK, Brave A, Wallgard E et al (2010) Therapeutic efficacy of a DNA vaccine targeting the endothelial tip cell antigen delta-like ligand 4 in mammary carcinoma. Oncogene 29:4276–4286

    Article  CAS  PubMed  Google Scholar 

  7. Huijbers EJ, Ringvall M, Femel J et al (2010) Vaccination against the extra domain-B of fibronectin as a novel tumor therapy. FASEB J 24:4535–4544

    Article  CAS  PubMed  Google Scholar 

  8. Jarosz M, Jazowiecka-Rakus J, Cichon T et al (2013) Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 20:262–273

    Article  CAS  PubMed  Google Scholar 

  9. Yoshikawa M, Mukai Y, Okada Y et al (2013) Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood 121:2804–2813

    Article  CAS  PubMed  Google Scholar 

  10. Mura M, Swain RK, Zhuang X et al (2012) Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene 31:293–305

    Article  CAS  PubMed  Google Scholar 

  11. Grone J, Doebler O, Loddenkemper C, Hotz B, Buhr HJ, Bhargava S (2006) Robo1/Robo4: differential expression of angiogenic markers in colorectal cancer. Oncol Rep 15:1437–1443

    PubMed  Google Scholar 

  12. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79:547–552

    Article  CAS  PubMed  Google Scholar 

  13. Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP (2005) Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 332:533–541

    Article  CAS  PubMed  Google Scholar 

  14. Marlow R, Binnewies M, Sorensen LK et al (2010) Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc Natl Acad Sci U S A 107:10520–10525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhuang X, Ahmed F, Zhang Y et al (2015) Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis 18:83–95

    Article  CAS  PubMed  Google Scholar 

  16. Opie EL, Freund J (1937) An experimental study of protective inoculation with heat killed Tubercle bacilli. J Exp Med 66:761–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davenport FM (1968) Seventeen years’ experience with mineral oil adjuvant influenza virus vaccines. Ann Allergy 26:288–292

    CAS  PubMed  Google Scholar 

  18. Toellner KM, Luther SA, Sze DM et al (1998) T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 187:1193–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dwyer MA, Huang AJ, Pan CQ, Lazarus RA (1999) Expression and characterization of a DNase I-Fc fusion enzyme. J Biol Chem 274:9738–9743

    Article  CAS  PubMed  Google Scholar 

  20. Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK (1998) Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281:96–99

    Article  CAS  PubMed  Google Scholar 

  21. Femel J, Huijbers EJ, Saupe F et al (2014) Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget 5:12418–12427

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huijbers EJ, Femel J, Andersson K, Bjorkelund H, Hellman L, Olsson AK (2012) The non-toxic and biodegradable adjuvant Montanide ISA 720/CpG can replace Freund’s in a cancer vaccine targeting ED-B—a prerequisite for clinical development. Vaccine 30:225–230

    Article  CAS  PubMed  Google Scholar 

  23. Francia G, Kerbel RS (2010) Raising the bar for cancer therapy models. Nat Biotechnol 28:561–562

    Article  CAS  PubMed  Google Scholar 

  24. Attia MA, Weiss DW (1966) Immunology of spontaneous mammary carcinomas in mice. V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res 26:1787–1800

    CAS  PubMed  Google Scholar 

  25. Crnic I, Christofori G (2004) Novel technologies and recent advances in metastasis research. Int J Dev Biol 48:573–581

    Article  CAS  PubMed  Google Scholar 

  26. Miller FR, Miller BE, Heppner GH (1983) Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis 3:22–31

    CAS  PubMed  Google Scholar 

  27. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    CAS  PubMed  Google Scholar 

  28. Pulaski BA, Ostrand-Rosenberg S (1998) Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res 58:1486–1493

    CAS  PubMed  Google Scholar 

  29. Tao K, Fang M, Alroy J, Sahagian GG (2008) Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8:228

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang X, Wong MK, Yi H et al (2002) Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res 62:5727–5735

    CAS  PubMed  Google Scholar 

  31. Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–122

    Article  CAS  PubMed  Google Scholar 

  32. Zanivan S, Maione F, Hein MY et al (2013) SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics 12:3599–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kai-Michael Toellner for the advice and help regarding the alum-based vaccination protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Bicknell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhuang, X., Bicknell, R. (2016). Development of Antibody-Based Vaccines Targeting the Tumor Vasculature. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1403. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3387-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3387-7_48

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3385-3

  • Online ISBN: 978-1-4939-3387-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics