Skip to main content

Advertisement

Log in

Robo4 vaccines induce antibodies that retard tumor growth

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Tumor endothelial specific expression of Robo4 in adults identifies this plasma membrane protein as an anti-cancer target for immunotherapeutic approaches, such as vaccination. In this report, we describe how vaccination against Robo4 inhibits angiogenesis and tumor growth. To break tolerance to the auto-antigen Robo4, mice were immunised with the extracellular domain of mouse Robo4, fused to the Fc domain of human immunoglobulin within an adjuvant. Vaccinated mice show a strong antibody response to Robo4, with no objectively detectable adverse effects on health. Robo4 vaccinated mice showed impaired fibrovascular invasion and angiogenesis in a rodent sponge implantation assay, as well as a reduced growth of implanted syngeneic Lewis lung carcinoma. The anti-tumor effect of Robo4 vaccination was present in CD8 deficient mice but absent in B cell or IgG1 knockout mice, suggesting antibody dependent cell mediated cytotoxicity as the anti-vascular/anti-tumor mechanism. Finally, we show that an adjuvant free soluble Robo4-carrier conjugate can retard tumor growth in carrier primed mice. These results point to appropriate Robo4 conjugates as potential anti-angiogenic vaccines for cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mura M, Swain RK, Zhuang X, Vorschmitt H, Reynolds G, Durant S et al (2012) Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene 31(3):293–305

    Article  CAS  PubMed  Google Scholar 

  2. Matejuk A, Leng Q, Chou ST, Mixson AJ (2011) Vaccines targeting the neovasculature of tumors. Vasc Cell 3(1):7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Haller BK, Brave A, Wallgard E, Roswall P, Sunkari VG, Mattson U et al (2010) Therapeutic efficacy of a DNA vaccine targeting the endothelial tip cell antigen delta-like ligand 4 in mammary carcinoma. Oncogene 29(30):4276–4286

    Article  CAS  PubMed  Google Scholar 

  4. Huijbers EJ, Ringvall M, Femel J, Kalamajski S, Lukinius A, Abrink M et al (2010) Vaccination against the extra domain-B of fibronectin as a novel tumor therapy. FASEB J 24(11):4535–4544

    Article  CAS  PubMed  Google Scholar 

  5. Jarosz M, Jazowiecka-Rakus J, Cichon T, Glowala-Kosinska M, Smolarczyk R, Smagur A et al (2013) Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 20(3):262–273

    Article  CAS  PubMed  Google Scholar 

  6. Yoshikawa M, Mukai Y, Okada Y, Tsumori Y, Tsunoda S, Tsutsumi Y et al (2013) Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood 121(14):2804–2813

    Article  CAS  PubMed  Google Scholar 

  7. Grone J, Doebler O, Loddenkemper C, Hotz B, Buhr HJ, Bhargava S (2006) Robo1/Robo4: differential expression of angiogenic markers in colorectal cancer. Oncol Rep 15(6):1437–1443

    PubMed  Google Scholar 

  8. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79(4):547–552

    Article  CAS  PubMed  Google Scholar 

  9. Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP (2005) Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 332(2):533–541

    Article  CAS  PubMed  Google Scholar 

  10. Marlow R, Binnewies M, Sorensen LK, Monica SD, Strickland P, Forsberg EC et al (2010) Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc Natl Acad Sci USA 107(23):10520–10525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhuang X, Cross D, Heath VL, Bicknell R (2011) Shear stress, tip cells and regulators of endothelial migration. Biochem Soc Trans 39(6):1571–1575

    Article  CAS  PubMed  Google Scholar 

  12. Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350(6317):423–426

    Article  CAS  PubMed  Google Scholar 

  13. Jung S, Rajewsky K, Radbruch A (1993) Shutdown of class switch recombination by deletion of a switch region control element. Science 259(5097):984–987

    Article  CAS  PubMed  Google Scholar 

  14. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  CAS  PubMed  Google Scholar 

  15. Pham HM, Arganaraz ER, Groschel B, Trono D, Lama J (2004) Lentiviral vectors interfering with virus-induced CD4 down-modulation potently block human immunodeficiency virus type 1 replication in primary lymphocytes. J Virol 78(23):13072–13081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dwyer MA, Huang AJ, Pan CQ, Lazarus RA (1999) Expression and characterization of a DNase I-Fc fusion enzyme. J Biol Chem 274(14):9738–9743

    Article  CAS  PubMed  Google Scholar 

  17. Stura EA, Fieser CG, Wilson IA (1993) Crystallization of antibodies and antibody–antigen complexes. Immunomethods 3:164–179

    Article  CAS  Google Scholar 

  18. Wang AC, Wang IY (1977) Cleavage sites of human IgG1 immunoglobulin by papain. Immunochemistry 14(3):197–200

    Article  CAS  PubMed  Google Scholar 

  19. Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H (1984) Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312(5994):548–551

    Article  CAS  PubMed  Google Scholar 

  20. Qin S, Cobbold S, Tighe H, Benjamin R, Waldmann H (1987) CD4 monoclonal antibody pairs for immunosuppression and tolerance induction. Eur J Immunol 17(8):1159–1165

    Article  CAS  PubMed  Google Scholar 

  21. Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK (1998) Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281(5373):96–99

    Article  CAS  PubMed  Google Scholar 

  22. Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R (2005) Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J 19(1):121–123

    CAS  PubMed  Google Scholar 

  23. Attia MA, Weiss DW (1966) Immunology of spontaneous mammary carcinomas in mice. V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res 26(8):1787–1800

    CAS  PubMed  Google Scholar 

  24. Toellner KM, Luther SA, Sze DM, Choy RK, Taylor DR, MacLennan IC et al (1998) T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 187(8):1193–1204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Huijbers EJ, Femel J, Andersson K, Bjorkelund H, Hellman L, Olsson AK (2012) The non-toxic and biodegradable adjuvant Montanide ISA 720/CpG can replace Freund’s in a cancer vaccine targeting ED-B–a prerequisite for clinical development. Vaccine 30(2):225–230

    Article  CAS  PubMed  Google Scholar 

  26. Laitinen L (1987) Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 19(4):225–234

    Article  CAS  PubMed  Google Scholar 

  27. Tyagi N, Roberts AM, Dean WL, Tyagi SC, Lominadze D (2008) Fibrinogen induces endothelial cell permeability. Mol Cell Biochem 307(1–2):13–22

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hariharan K, Braslawsky G, Black A, Raychaudhuri S, Hanna N (1995) The induction of cytotoxic T cells and tumor regression by soluble antigen formulation. Cancer Res 55(16):3486–3489

    CAS  PubMed  Google Scholar 

  29. Toellner K-M, Gulbranson-Judge A, Taylor DR, Sze DM-Y, MacLennan ICM (1996) Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation. J Exp Med 183(5):2303–2312

    Article  CAS  PubMed  Google Scholar 

  30. Toellner K-M, Luther SA, Sze DM, Choy RK, Taylor DR, MacLennan IC et al (1998) T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 187(8):1193–1204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Siemann DW (2011) The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37(1):63–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Huminiecki L, Bicknell R (2000) In silico cloning of novel endothelial-specific genes. Genome Res 10(11):1796–1806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB et al (2003) Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261(1):251–267

    Article  CAS  PubMed  Google Scholar 

  34. Sheldon H, Andre M, Legg JA, Heal P, Herbert JM, Sainson R et al (2009) Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 23(2):513–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA et al (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14(4):448–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Koch AW, Mathivet T, Larrivee B, Tong RK, Kowalski J, Pibouin-Fragner L et al (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20(1):33–46

    Article  CAS  PubMed  Google Scholar 

  37. Okada Y, Jin E, Nikolova-Krstevski V, Yano K, Liu J, Beeler D et al (2008) A GABP-binding element in the Robo4 promoter is necessary for endothelial expression in vivo. Blood 112(6):2336–2339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nagayama H, Matsumoto K, Isoo N, Ohno H, Takahashi N, Nakaoka T et al (2010) Gastrointestinal bleeding during anti-angiogenic peptide vaccination in combination with gemcitabine for advanced pancreatic cancer. Clin J Gastroenterol 3(6):307–317

    Article  Google Scholar 

  39. Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96(12):1788–1795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Clark AJ, Butowski NA, Chang SM, Prados MD, Clarke J, Polley MY et al (2011) Impact of bevacizumab chemotherapy on craniotomy wound healing. J Neurosurg 114(6):1609–1616

    Article  PubMed  Google Scholar 

  41. Boles KS, Schmieder AH, Koch AW, Carano RA, Wu Y, Caruthers SD et al (2010) MR angiogenesis imaging with Robo4- vs. alphaVbeta3-targeted nanoparticles in a B16/F10 mouse melanoma model. FASEB J 24(11):4262–4270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Johansson J, Ledin A, Vernersson M, Lovgren-Bengtsson K, Hellman L (2004) Identification of adjuvants that enhance the therapeutic antibody response to host IgE. Vaccine. 22(21–22):2873–2880

  43. Ringvall M, Huijbers EJ, Ahooghalandari P, Alekseeva L, Andronova T, Olsson AK et al (2009) Identification of potent biodegradable adjuvants that efficiently break self-tolerance—a key issue in the development of therapeutic vaccines. Vaccine 28(1):48–52

    Article  PubMed  Google Scholar 

  44. Anderson P (1983) Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein CRM197. Infect Immun 39(1):233–238

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Savelyeva N, Shipton M, Suchacki A, Babbage G, Stevenson FK (2011) High-affinity memory B cells induced by conjugate vaccines against weak tumor antigens are vulnerable to nonconjugated antigen. Blood 118(3):650–659

    Article  CAS  PubMed  Google Scholar 

  46. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  CAS  PubMed  Google Scholar 

  47. Parra C, Gonzalez JM, Castaneda E, Fiorentino S (2005) Anti-glucuronoxylomannan IgG1 specific antibodies production in Cryptococcus neoformans resistant mice. Biomedica 25(1):110–119

    Article  PubMed  Google Scholar 

  48. Niederer HA, Clatworthy MR, Willcocks LC, Smith KG (2010) FcgammaRIIB, FcgammaRIIIB, and systemic lupus erythematosus. Ann NY Acad Sci 1183:69–88

    Article  CAS  PubMed  Google Scholar 

  49. Karagiannis P, Gilbert AE, Josephs DH, Ali N, Dodev T, Saul L et al (2013) IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Investig 123(4):1457–1474

Download references

Acknowledgments

This work was funded by Cancer Research UK Grant Number C4719/A7825 awarded to Roy Bicknell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Bicknell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1040 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, X., Ahmed, F., Zhang, Y. et al. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis 18, 83–95 (2015). https://doi.org/10.1007/s10456-014-9448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9448-z

Keywords

Navigation