The Plant Ontology: A Tool for Plant Genomics

  • Laurel Cooper
  • Pankaj JaiswalEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1374)


The use of controlled, structured vocabularies (ontologies) has become a critical tool for scientists in the post-genomic era of massive datasets. Adoption and integration of common vocabularies and annotation practices enables cross-species comparative analyses and increases data sharing and reusability. The Plant Ontology (PO; describes plant anatomy, morphology, and the stages of plant development, and offers a database of plant genomics annotations associated to the PO terms. The scope of the PO has grown from its original design covering only rice, maize, and Arabidopsis, and now includes terms to describe all green plants from angiosperms to green algae.

This chapter introduces how the PO and other related ontologies are constructed and organized, including languages and software used for ontology development, and provides an overview of the key features. Detailed instructions illustrate how to search and browse the PO database and access the associated annotation data. Users are encouraged to provide input on the ontology through the online term request form and contribute datasets for integration in the PO database.

Key words

Bioinformatics Ontology Plant anatomy Plant development Comparative genomics Genomeannotation Transcriptomics Phenomics Semantic web 



The authors would like to acknowledge the contributions of the current and former members of the PO Project ( for their contributions to ontology development; the Gene Ontology Consortium ( for its leadership in the ontology field, for sharing software tools AmiGO an ontology browser, and the GO database package, which were both customized for the PO project; Christopher Sullivan (Center for Genome Research and Biocomputing at Oregon State University) for help with hosting and maintenance of the PO project web servers, and the members of the Jaiswal lab group at Oregon State University. We also acknowledge the iPlant Collaborative ( for hosting a mirror site of PO ( We extend special thanks to the numerous collaborators and domain experts ( who continue to contribute to the development and maintenance of the PO and the annotation database. This work was supported by the US National Science Foundation (Award # IOS:0822201 award).


  1. 1.
    Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7. doi: 10.3835/plantgenome2013.03.0001in CrossRefGoogle Scholar
  2. 2.
    Fox SE, Geniza M, Hanumappa M et al (2014) De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum. PLoS One 9:e96855. doi: 10.1371/journal.pone.0096855 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Fox SE, Preece J, Kimbrel JA et al (2013) Sequencing and de novo transcriptome assembly of Brachypodium sylvaticum (Poaceae). Appl Plant Sci 1:1200011. doi: 10.3732/apps.1200011 Google Scholar
  4. 4.
    Mishima K, Fujiwara T, Iki T et al (2014) Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics 15:219PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Mudalkar S, Golla R, Ghatty S, Reddy A (2014) De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Biol 84:159–171. doi: 10.1007/s11103-013-0125-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Ranjan A, Ichihashi Y, Farhi M et al (2014) De novo assembly and characterization of the transcriptome of the parasitic weed Cuscuta pentagona identifies genes associated with plant parasitism. Plant Physiol 166:1186. doi: 10.1104/pp. 113.234864 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Wu J, Xu Z, Zhang Y et al (2014) An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot 65:1651–1671. doi: 10.1093/jxb/eru044 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi: 10.1038/35048692 CrossRefGoogle Scholar
  9. 9.
    Myburg AA, Grattapaglia D, Tuskan GA et al (2014) The genome of Eucalyptus grandis. Nature 510:356. doi: 10.1038/nature13308 PubMedGoogle Scholar
  10. 10.
    Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584CrossRefPubMedGoogle Scholar
  11. 11.
    Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707CrossRefPubMedGoogle Scholar
  12. 12.
    Sansone S-A, Rocca-Serra P, Field D et al (2012) Toward interoperable bioscience data. Nat Genet 44:121–126. doi: 10.1038/ng.1054 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kolker E, Özdemir V, Martens L et al (2014) Toward more transparent and reproducible omics studies through a common metadata checklist and data publications. OMICS J Integr Biol 18:10–14. doi: 10.1089/omi.2013.0149 CrossRefGoogle Scholar
  14. 14.
    Wruck W, Peuker M, Regenbrecht CRA (2014) Data management strategies for multinational large-scale systems biology projects. Brief Bioinform 15:65–78. doi: 10.1093/bib/bbs064 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Taylor CF, Field D, Sansone S-A et al (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26:889–896. doi: 10.1038/nbt0808-889 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Rocca-Serra P, Brandizi M, Maguire E et al (2010) ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level. Bioinformatics 26:2354–2356. doi: 10.1093/bioinformatics/btq415 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Appels R, Nystrom-Persson J, Keeble-Gagnere G (2014) Advances in genome studies in plants and animals - Springer. Funct Integr Genomics 14:1–9. doi: 10.1007/s10142-014-0364-5 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Stevens R, Rector A, Hull D (2010) What is an ontology? OntogenesisGoogle Scholar
  19. 19.
    Walls RL, Athreya B, Cooper L et al (2012) Ontologies as integrative tools for plant science. Am J Bot 99:1263–1275. doi: 10.3732/ajb.1200222 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Cooper L, Walls RL, Elser J et al (2013) The Plant Ontology as a tool for comparative plant anatomy and genomic analyses. Plant Cell Physiol 54:e1. doi: 10.1093/pcp/pcs163 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. doi: 10.1038/75556 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    The Gene Ontology Consortium (2013) Gene ontology annotations and resources. Nucleic Acids Res 41:D530–D535. doi: 10.1093/nar/gks1050 PubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schaeffer ML, Harper LC, Gardiner JM et al (2011) MaizeGDB: curation and outreach go hand-in-hand. Database (Oxford) 2011:bar022. doi: 10.1093/database/bar022 CrossRefGoogle Scholar
  24. 24.
    Lamesch P, Berardini TZ, Li D et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210. doi: 10.1093/nar/gkr1090 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Monaco MK, Stein J, Naithani S et al (2014) Gramene 2013: comparative plant genomics resources. Nucleic Acids Res 42:D1193–D1199. doi: 10.1093/nar/gkt1110 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Kersey PJ, Allen JE, Christensen M et al (2014) Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42:D546–D552. doi: 10.1093/nar/gkt979 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Neale DB, Wegrzyn JL, Stevens KA et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59. doi: 10.1186/gb-2014-15-3-r59 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116. doi: 10.1038/ng.740 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Varshney RK, Mir RR, Bhatia S et al (2014) Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct Integr Genomics 14:59–73. doi: 10.1007/s10142-014-0363-6 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Rowley ER, Fox SE, Bryant DW et al (2012) Assembly and characterization of the European Hazelnut “Jefferson” transcriptome. Crop Sci 52:2679. doi: 10.2135/cropsci2012.02.0065 CrossRefGoogle Scholar
  31. 31.
    Sharma N, Jung C-H, Bhalla PL, Singh MB (2014) RNA sequencing analysis of the gametophyte transcriptome from the liverwort, marchantia polymorpha. PLoS One 9:e97497PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Liu M, Qiao G, Jiang J et al (2012) Transcriptome sequencing and de novo analysis for ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS One 7:e46766. doi: 10.1371/journal.pone.0046766 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Garcia-Hernandez M, Berardini TZ, Chen G et al (2002) TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics 2:239–253. doi: 10.1007/s10142-002-0077-z CrossRefPubMedGoogle Scholar
  34. 34.
    Vincent L, Coe EH, Polacco ML (2003) Zea mays ontology - a database of international terms. Trends Plant Sci 8:517–520. doi: 10.1016/j.tplants.2003.09.014 CrossRefPubMedGoogle Scholar
  35. 35.
    Jaiswal P, Ware D, Ni J et al (2002) Gramene: development and integration of trait and gene ontologies for rice. Comp Funct Genom 3:132–136CrossRefGoogle Scholar
  36. 36.
    Jaiswal P, Avraham S, Ilic K et al (2005) Plant Ontology (PO): a controlled vocabulary of plant structures and growth stages. Comp Funct Genom 6:388–397CrossRefGoogle Scholar
  37. 37.
    Ilic K, Kellogg EA, Jaiswal P et al (2007) The plant structure ontology, a unified vocabulary of anatomy and morphology of a flowering plant. Plant Physiol 143:587–599. doi: 10.1104/pp. 106.092825 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Pujar A, Jaiswal P, Kellogg EA et al (2006) Whole-plant growth stage ontology for Angiosperms and its application in plant biology. Plant Physiol 142:414–428. doi: 10.1104/pp. 106.085720 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Rosse C, Mejino JLV (2007) The foundational model of anatomy ontology. In: Burger A, Davidson D, Baldock R (eds) Anatomy ontologies for bioinformatics: principles and practice. Springer, New York, NY, pp 59–117Google Scholar
  40. 40.
    Haendel M, Neuhaus F, Osumi-Sutherland D et al (2008) CARO - the common anatomy reference ontology. In: Burger A, Davidson D, Baldock R (eds) Anatomy ontologies for bioinformatics: principles and practice. Springer, New York, NY, pp 327–349CrossRefGoogle Scholar
  41. 41.
    O’Donoghue M-T, Chater C, Wallace S et al (2013) Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens. J Exp Bot 64:3567–3581. doi: 10.1093/jxb/ert190 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Hill DP, Smith B, McAndrews-Hill MS, Blake J (2008) Gene Ontology annotations: what they mean and where they come from. BMC Bioinform 9:S2CrossRefGoogle Scholar
  43. 43.
    Smith B, Ashburner M, Rosse C et al (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255. doi: 10.1038/nbt1346 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Rosse C, Mejino JLV Jr (2003) A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform 36:478–500. doi: 10.1016/j.jbi.2003.11.007 CrossRefPubMedGoogle Scholar
  45. 45.
    Meehan T, Masci A, Abdulla A et al (2011) Logical development of the cell ontology. BMC Bioinform 12:6CrossRefGoogle Scholar
  46. 46.
    Mungall CJ, Bada M, Berardini TZ et al (2011) Cross-product extensions of the gene ontology. J Biomed Inform 44:80–86. doi: 10.1016/j.jbi.2010.02.002 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Dentler K, Cornet R, ten Teije A, de Keizer N (2011) Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semant Web 2:71–87. doi: 10.3233/SW-2011-0034 Google Scholar
  48. 48.
    Smith B, Ceusters W, Klagges B et al (2005) Relations in biomedical ontologies. Genome Biol 6:R46PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Day-Richter J, Harris MA, Haendel M et al (2007) OBO-Edit an ontology editor for biologists. Bioinformatics 23:2198–2200. doi: 10.1093/bioinformatics/btm112 CrossRefPubMedGoogle Scholar
  50. 50.
    Tirmizi S, Aitken S, Moreira D et al (2011) Mapping between the OBO and OWL ontology languages. J Biomed Semant 2:S3CrossRefGoogle Scholar
  51. 51.
    Horridge M, Drummond N, Goodwin J, et al. (2006) The Manchester OWL Syntax. Proc. 2006 OWL Exp. Dir. Workshop OWL-ED2006Google Scholar
  52. 52.
    Horridge M, Bechhofer S (2011) The OWL API: a Java API for OWL ontologies. Semant Web 2:11–21. doi: 10.3233/SW-2011-0025 Google Scholar
  53. 53.
    Horridge M, Tudorache T, Nuylas C et al (2014) WebProtégé: a collaborative web based platform for editing biomedical ontologies. Bioinformatics 30:2384. doi: 10.1093/bioinformatics/btu256 PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Carbon S, Ireland A, Mungall CJ et al (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289. doi: 10.1093/bioinformatics/btn615 PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Arnaud E, Cooper L, Shrestha R, et al. (2012) Towards a reference Plant Trait Ontology for modeling knowledge of plant traits and phenotypes. Proceedings of the International Conference on Knowledge Engineering and Ontology Development, Barcelona, Spain, pp 220–225Google Scholar
  56. 56.
    Gkoutos G, Green E, Mallon A-M et al (2004) Using ontologies to describe mouse phenotypes. Genome Biol 6:R8PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Buttigieg PL, Morrison N, Smith B et al (2013) The environment ontology: contextualising biological and biomedical entities. J Biomed Semant 4:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA

Personalised recommendations