Skip to main content

SiRNA In Vivo-Targeted Delivery to Murine Dendritic Cells by Oral Administration of Recombinant Yeast

  • Protocol
SiRNA Delivery Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1364))

Abstract

SiRNA therapeutics promise a future where any target in the transcriptome could be potentially addressed. However, the delivery of SiRNAs and targeting of particular cell types or organs are major challenges. A novel, efficient, and safe delivery system for promising the introduction of SiRNAs into particular cell types within living organisms is of great significance. Our previous studies have proved that recombinant protein (MSTN) and exogenous gene (EGFP) as vaccines, and furthermore functional CD40 shRNA expression can be delivered into dendritic cells (DCs) in mouse by oral administration of recombinant yeast (Saccharomyces cerevisiae). Here, we describe the details of the promising and innovative approach based on oral administration of recombinant yeast that allows in vivo-targeted delivery of functional SiRNA to murine intestinal DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3:83–92

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6:1130–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  5. Paddison PJ, Hannon GJ (2002) RNA interference: the new somatic cell genetics? Cancer Cell 2:17–23

    Article  CAS  PubMed  Google Scholar 

  6. Karimi MH, Ebadi P, Pourfathollah AA, Soheili ZS, Samiee S, Ataee Z, Tabei SZ, Moazzeni SM (2009) Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells. Cell Immunol 259:74–81

    Article  CAS  PubMed  Google Scholar 

  7. Grimm D (2009) Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 61:672–703

    Article  CAS  PubMed  Google Scholar 

  8. Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, Franzusoff A, Duke RC, Wilson CC (2001) Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med 7:625–629

    Article  CAS  PubMed  Google Scholar 

  9. Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y, Bellgrau D, Rodell TC, Apelian D, Franzusoff A, Duke RC (2007) Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and Core proteins. Vaccine 25:1452–1463

    Article  CAS  PubMed  Google Scholar 

  10. Wansley EK, Chakraborty M, Hance KW, Bernstein MB, Boehm AL, Guo Z, Quick D, Franzusoff A, Greiner JW, Schlom J, Hodge JW (2008) Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clin Cancer Res 14:4316–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bernstein MB, Chakraborty M, Wansley EK, Guo Z, Franzusoff A, Mostbock S, Sabzevari H, Schlom J, Hodge JW (2008) Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine 26:509–521

    Article  CAS  PubMed  Google Scholar 

  12. Blanquet S, Meunier JP, Minekus M, Marol-Bonnin S, Alric M (2003) Recombinant Saccharomyces cerevisiae expressing P450 in artificial digestive systems: a model for biodetoxication in the human digestive environment. Appl Environ Microbiol 69:2884–2892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Begriche K, Levasseur PR, Zhang J, Rossi J, Skorupa D, Solt LA, Young B, Burris TP, Marks DL, Mynatt RL, Butler AA (2011) Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane G-protein-coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis. J Biol Chem 286:40771–40781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhang T, Sun L, Xin Y, Ma L, Zhang Y, Wang X, Xu K, Ren C, Zhang C, Chen Z, Yang H, Zhang Z (2012) A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin. BMC Biotechnol 12:97

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kiflmariam MG, Yang H, Zhang Z (2013) Gene delivery to dendritic cells by orally administered recombinant Saccharomyces cerevisiae in mice. Vaccine 31:1360–1363

    Article  CAS  PubMed  Google Scholar 

  16. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  17. Palucka K, Banchereau J (1999) Dendritic cells: a link between innate and adaptive immunity. J Clin Immunol 19:12–25

    Article  CAS  PubMed  Google Scholar 

  18. Qian C, Qian L, Yu Y, An H, Guo Z, Han Y, Chen Y, Bai Y, Wang Q, Cao X (2013) Fas signal promotes the immunosuppressive function of regulatory dendritic cells via the ERK/beta-catenin pathway. J Biol Chem 288:27825–27835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Fu C, Jiang A (2010) Generation of tolerogenic dendritic cells via the E-cadherin/beta-catenin-signaling pathway. Immunol Res 46:72–78

    Article  CAS  PubMed  Google Scholar 

  20. Lutgens E, Daemen MJ (2002) CD40-CD40L interactions in atherosclerosis. Trends Cardiovasc Med 12:27–32

    Article  CAS  PubMed  Google Scholar 

  21. Ma DY, Clark EA (2009) The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 21:265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zheng X, Vladau C, Zhang X, Suzuki M, Ichim TE, Zhang ZX, Li M, Carrier E, Garcia B, Jevnikar AM, Min WP (2009) A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood 113:2646–2654

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki M, Zheng X, Zhang X, Li M, Vladau C, Ichim TE, Sun H, Min LR, Garcia B, Min WP (2008) Novel vaccination for allergy through gene silencing of CD40 using small interfering RNA. J Immunol 180:8461–8469

    Article  CAS  PubMed  Google Scholar 

  24. Moore TM, Shirah WB, Khimenko PL, Paisley P, Lausch RN, Taylor AE (2002) Involvement of CD40-CD40L signaling in postischemic lung injury. Am J Physiol Lung Cell Mol Physiol 283:L1255–L1262

    Article  CAS  PubMed  Google Scholar 

  25. Taylor PA, Friedman TM, Korngold R, Noelle RJ, Blazar BR (2002) Tolerance induction of alloreactive T cells via ex vivo blockade of the CD40:CD40L costimulatory pathway results in the generation of a potent immune regulatory cell. Blood 99:4601–4609

    Article  CAS  PubMed  Google Scholar 

  26. Ripoll E, Merino A, Herrero-Fresneda I, Aran JM, Goma M, Bolanos N, de Ramon L, Bestard O, Cruzado JM, Grinyo JM, Torras J (2013) CD40 gene silencing reduces the progression of experimental lupus nephritis modulating local milieu and systemic mechanisms. PLoS One 8, e65068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Suzuki M, Zheng X, Zhang X, Ichim TE, Sun H, Kubo N, Beduhn M, Shunnar A, Garcia B, Min WP (2009) Inhibition of allergic responses by CD40 gene silencing. Allergy 64:387–397

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Wang YM, Wang Y, Zheng G, Zhang GY, Zhou JJ, Tan TK, Cao Q, Hu M, Watson D, Wu H, Zheng D, Wang C, Lahoud MH, Caminschi I, Harris DC, Alexander SI (2013) DNA vaccine encoding CD40 targeted to dendritic cells in situ prevents the development of Heymann nephritis in rats. Kidney Int 83:223–232

    Article  CAS  PubMed  Google Scholar 

  29. Zheng X, Suzuki M, Zhang X, Ichim TE, Zhu F, Ling H, Shunnar A, Wang MH, Garcia B, Inman RD, Min WP (2010) RNAi-mediated CD40-CD154 interruption promotes tolerance in autoimmune arthritis. Arthritis Res Ther 12:R13

    Article  PubMed Central  PubMed  Google Scholar 

  30. Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, Hannon GJ (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288

    CAS  PubMed  Google Scholar 

  31. Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O’Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    Article  CAS  PubMed  Google Scholar 

  32. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Zhang T, Wang L, Shao S, Chen Z, Zhang Z (2014) In vivo targeted delivery of CD40 shRNA to mouse intestinal dendritic cells by oral administration of recombinant Saccharomyces cerevisiae. Gene Ther 21:709–714

    Article  PubMed Central  PubMed  Google Scholar 

  35. Gietz RD (2014) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 1163:33–44

    Article  CAS  PubMed  Google Scholar 

  36. Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37

    Article  CAS  PubMed  Google Scholar 

  37. Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 313:107–120

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the colleagues in Professor Zhang’s lab for their excellent technical assistance and helpful collaboration. We are grateful to financial support from China’s Ministry of Agriculture (948 Program 2013-Z27), China’s Ministry of Science and Technology (National Science and Technology Major Project 2014ZX0801009B and 973 Program 2011CBA01002) and National Natural Science Foundation of China (NSFC 31172186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xu, K., Liu, Z., Zhang, L., Zhang, T., Zhang, Z. (2016). SiRNA In Vivo-Targeted Delivery to Murine Dendritic Cells by Oral Administration of Recombinant Yeast. In: Shum, K., Rossi, J. (eds) SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3112-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3112-5_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3111-8

  • Online ISBN: 978-1-4939-3112-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics