Advertisement

Assaying the Posttranslational Arginylation of Proteins in Cultured Cells

  • Mauricio R. Galiano
  • Marta E. HallakEmail author
Protocol
  • 1.5k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1337)

Abstract

To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the 14C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.

Key words

Arg-tRNA-protein transferase Posttranslational arginylation Metabolic labeling N-terminal modification ATE1 

Notes

Acknowledgments

M.R.G. and M.E.H. are career investigators from CONICET.

References

  1. 1.
    Seo J, Lee KJ (2004) Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37(1):35–44CrossRefPubMedGoogle Scholar
  2. 2.
    Baumann M, Meri S (2004) Techniques for studying protein heterogeneity and post-translational modifications. Expert Rev Proteomics 1(2):207–217CrossRefPubMedGoogle Scholar
  3. 3.
    Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252CrossRefPubMedGoogle Scholar
  4. 4.
    Shrimal S, Trueman SF, Gilmore R (2013) Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST. J Cell Biol 201(1):81–95PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Decca MB, Carpio MA, Bosc C, Galiano MR, Job D, Andrieux A, Hallak ME (2007) Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules. J Biol Chem 282(11):8237–8245PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Saha S, Kashina A (2011) Posttranslational arginylation as a global biological regulator. Dev Biol 358(1):1–8PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kaji H, Novelli GD, Kaji A (1963) A soluble amino acid-incorporating system from rat liver. Biochim Biophys Acta 76:474–477CrossRefPubMedGoogle Scholar
  8. 8.
    Soffer RL, Horinishi H (1969) Enzymic modification of proteins. I. General characteristics of the arginine-transfer reaction in rabbit liver cytoplasm. J Mol Biol 43(1):163–175CrossRefPubMedGoogle Scholar
  9. 9.
    Soffer RL (1970) Aminoacyl-tRNA-protein transferases: a novel class of enzymes catalyzing peptide bond formation. Trans N Y Acad Sci 32(8):974–988CrossRefPubMedGoogle Scholar
  10. 10.
    Soffer RL (1970) Enzymatic modification of proteins. II. Purification and properties of the arginyl transfer ribonucleic acid-protein transferase from rabbit liver cytoplasm. J Biol Chem 245(4):731–737PubMedGoogle Scholar
  11. 11.
    Ciechanover A, Ferber S, Ganoth D, Elias S, Hershko A, Arfin S (1988) Purification and characterization of arginyl-tRNA-protein transferase from rabbit reticulocytes. Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway. J Biol Chem 263(23):11155–11167PubMedGoogle Scholar
  12. 12.
    Soffer RL (1971) Enzymatic modification of proteins.V. Protein acceptor specificity in the arginine-transfer reaction. J Biol Chem 246(6):1602–1606PubMedGoogle Scholar
  13. 13.
    Wang J, Han X, Saha S, Xu T, Rai R, Zhang F, Wolf YI, Wolfson A, Yates JR III, Kashina A (2011) Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. Chem Biol 18(1):121–130PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Soffer RL (1973) Peptide acceptors in the arginine transfer reaction. J Biol Chem 248(8):2918–2921PubMedGoogle Scholar
  15. 15.
    Eriste E, Norberg A, Nepomuceno D, Kuei C, Kamme F, Tran DT, Strupat K, Jornvall H, Liu C, Lovenberg TW, Sillard R (2005) A novel form of neurotensin post-translationally modified by arginylation. J Biol Chem 280(42):35089–35097CrossRefPubMedGoogle Scholar
  16. 16.
    Wong CC, Xu T, Rai R, Bailey AO, Yates JR III, Wolf YI, Zebroski H, Kashina A (2007) Global analysis of posttranslational protein arginylation. PLoS Biol 5(10), e258PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Rai R, Wong CC, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR 3rd, Kashina A (2008) Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 135(23):3881–3889PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Bohley P, Kopitz J, Adam G (1988) Arginylation, surface hydrophobicity and degradation of cytosol proteins from rat hepatocytes. Adv Exp Med Biol 240:159–169CrossRefPubMedGoogle Scholar
  19. 19.
    Elias S, Ciechanover A (1990) Post-translational addition of an arginine moiety to acidic NH2 termini of proteins is required for their recognition by ubiquitin-protein ligase. J Biol Chem 265(26):15511–15517PubMedGoogle Scholar
  20. 20.
    Bohley P, Kopitz J, Adam G, Rist B, von Appen F, Urban S (1991) Post-translational arginylation and intracellular proteolysis. Biomed Biochim Acta 50(4-6):343–346PubMedGoogle Scholar
  21. 21.
    Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A (2010) Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 21(8):1350–1361PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Decca MB, Bosc C, Luche S, Brugiere S, Job D, Rabilloud T, Garin J, Hallak ME (2006) Protein arginylation in rat brain cytosol: a proteomic analysis. Neurochem Res 31(3):401–409CrossRefPubMedGoogle Scholar
  23. 23.
    Carpio MA, Lopez Sambrooks C, Durand ES, Hallak ME (2010) The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem J 429(1):63–72CrossRefPubMedGoogle Scholar
  24. 24.
    Lopez Sambrooks C, Carpio MA, Hallak ME (2012) Arginylated calreticulin at plasma membrane increases susceptibility of cells to apoptosis. J Biol Chem 287(26):22043–22054PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Fissolo S, Bongiovanni G, Decca MB, Hallak ME (2000) Post-translational arginylation of proteins in cultured cells. Neurochem Res 25(1):71–76CrossRefPubMedGoogle Scholar
  26. 26.
    Lanucara F, Eyers CE (2011) Mass spectrometric-based quantitative proteomics using SILAC. Methods Enzymol 500:133–150CrossRefPubMedGoogle Scholar
  27. 27.
    Fraenkel-Conrat H, Harris JI, Levy AL (1955) Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal 2:359–425CrossRefPubMedGoogle Scholar
  28. 28.
    Edman P (1949) A method for the determination of amino acid sequence in peptides. Arch Biochem 22(3):475PubMedGoogle Scholar
  29. 29.
    DeLange RJ, Fambrough DM, Smith EL, Bonner J (1968) Calf and pea histone IV. I. Amino acid compositions and the identical COOH-terminal 19-residue sequence. J Biol Chem 243(22):5906–5913PubMedGoogle Scholar
  30. 30.
    Wang J, Han X, Wong CC, Cheng H, Aslanian A, Xu T, Leavis P, Roder H, Hedstrom L, Yates JR III, Kashina A (2014) Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo. Chem Biol 21(3):331–337PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Saha S, Wong CC, Xu T, Namgoong S, Zebroski H, Yates JR III, Kashina A (2011) Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo. Chem Biol 18(11):1369–1378PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Xu T, Wong CC, Kashina A, Yates JR III (2009) Identification of N-terminally arginylated proteins and peptides by mass spectrometry. Nat Protoc 4(3):325–332PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, (UNC-CONICET)Universidad Nacional de Córdoba (X5000HUA)CórdobaArgentina

Personalised recommendations