Skip to main content

Advertisement

Log in

Protein Arginylation in Rat Brain Cytosol: A Proteomic Analysis

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Arginine can be post-translationally incorporated from arginyl-tRNA into the N-terminus of soluble acceptor proteins in a reaction catalyzed by arginyl-tRNA protein transferase. In the present study, several soluble rat brain proteins that accepted arginine were identified after arginine incorporation by two dimensional electrophoresis and mass spectrometry. They were identified as: contrapsin-like protease inhibitor-3, α-1-antitrypsin, apolipoprotein E, hemopexin, calreticulin and apolipoprotein A-I. All of these proteins shared a signal sequence for the translocation of proteins across endoplasmic reticulum membranes. After losing the signal peptide, these proteins expose amino acids described as compatible for post-translational arginylation. Although the enzymatic system involved in arginylation is confined mainly in cytosol and nucleus, all the substrates described herein enter to the exocytic pathway co-translationally. Therefore, we postulate that the substrates for arginylation could reach the cytosol by retro-translocation and be then arginylated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaji H, Novelli GD, Kaji A (1963) A soluble amino acid-incorporating system from rat liver. Biochim Biophys Acta 76:474–474

    Article  PubMed  CAS  Google Scholar 

  2. Barra HS, Rodriguez JA, Arce CA, Caputto R (1973) A soluble preparation from rat brain that incorporates into its own proteins (14 C) arginine by a ribonuclease-sensitive system and (14 C) tyrosine by a ribonuclease-insensitive system. J Neurochem 20:97–108

    Article  PubMed  CAS  Google Scholar 

  3. Hallak ME, Barra HS, Caputto R (1985) Post-translational incorporation of arginine into rat brain proteins. Acceptor changes during development. J Neurochem 44:665–669

    Article  PubMed  CAS  Google Scholar 

  4. Soffer RL (1971) Enzymatic modification of proteins. V. Protein acceptor specificity in the arginine-transfer reaction. J Biol Chem 246:1602–1606

    PubMed  CAS  Google Scholar 

  5. Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS, Varshavsky A (1989) Universality and structure of the N-end rule. J Biol Chem 264:16700–16712

    PubMed  CAS  Google Scholar 

  6. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  7. Reiss Y, Kaim D, Hershko A (1998) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    Google Scholar 

  8. Ferber S, Ciechanover A (1987) Role of arginine–tRNA in protein degradation by the ubiquitin pathway. Nature 326:808–811

    Article  PubMed  CAS  Google Scholar 

  9. Xu NS, Chakraborty G, Hassankhani A, Ingoglia NA (1993) N-terminal anginylation of proteins in explants of injured sciatic nerves and embryonic brain of rats. Neurochem Res 18:1117–1123

    Article  PubMed  CAS  Google Scholar 

  10. Bongiovanni G, Fissolo S, Barra HS, Hallak ME (1999) Post-translational arginylation of soluble rat brain proteins after whole body hyperthermia. J Neurosci Res 56:85–92

    Article  PubMed  CAS  Google Scholar 

  11. Fissolo S, Bongiovanni G, Decca MB, Hallak ME (2000) Post-translational arginylation of proteins in cultured cells. Neurochem Res 25:71–76

    Article  PubMed  CAS  Google Scholar 

  12. Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA 93:12142–12149

    Article  PubMed  CAS  Google Scholar 

  13. Kaji H, Rao P (1976) Membrane modification by arginyl tRNA. FEBS Lett 66:194–197

    Article  PubMed  CAS  Google Scholar 

  14. Hallak ME, Bongiovanni G, Barra HS (1991) The post-translational arginylation of proteins in different regions of rat brain. J Neurochem 57:1735–1739

    Article  PubMed  CAS  Google Scholar 

  15. Bohley P, Kopitz J, Adam G, Rist B, von Appen F, Urban S (1991) Post-translational arginylation and intracellular proteolysis. Biomed Biochim Acta 50:343–346

    PubMed  CAS  Google Scholar 

  16. Elias S, Ciechanover A (1990) Post-translational addition of an arginine moiety to acidic NH2 termini of proteins is required for their recognition by ubiquitin–protein ligase. J Biol Chem 265:15511–15516

    PubMed  CAS  Google Scholar 

  17. Davydov IV, Varshavsky A (2000) RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem 275:22931–22941

    Article  PubMed  CAS  Google Scholar 

  18. Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, Du F, Varshavsky A (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297:96–99

    Article  PubMed  CAS  Google Scholar 

  19. Soffer RL (1975) Enzymatic arginylation of beta-melanocyte-stimulating hormone and of angiotensin II. J Biol Chem 250:2626–2629

    PubMed  CAS  Google Scholar 

  20. Bongiovanni G, Fidelio GD, Barra HS, Hallak ME (1995) The post-translational incorporation of arginine into a beta-amyloid peptide increases the probability of alpha-helix formation. Neuroreport 7:326–328

    PubMed  CAS  Google Scholar 

  21. Kopitz J, Rist B, Bohley P (1990) Post-translational arginylation of ornithine decarboxylase from rat hepatocytes. Biochem J 267:343–348

    PubMed  CAS  Google Scholar 

  22. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599

    Article  PubMed  CAS  Google Scholar 

  23. Hamilton MH, Cook LA, McRackan TR, Schey KL, Hildebrandt JD (2003) Gamma 2 subunit of G protein heterotrimer is an N-end rule ubiquitylation substrate. Proc Natl Acad Sci USA 100:5081–5086

    Article  PubMed  CAS  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  25. Sawada MT, Morinaga C.; Izumi K, Sawada H (1999) The 26S proteosome assembly is regulated by a maturation inducing hormone in starfish oocytes. Biochem Biophys Res Commun 254:338–344

    Article  PubMed  CAS  Google Scholar 

  26. Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, Von Zglinicki T, Davies KJ (2000) Proteosoma inhibition by lipofuscin/ceroid during post-mitotic aging of fibroblast. FASEB J 14:1490–1498

    Article  PubMed  CAS  Google Scholar 

  27. Rabilloud T, Kieffer S, Procaccio V, Louwagie M, Courchesne PL, Patterson SD, Martinez P, Garin J, Lunardi J (1998) Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis 19:1006–1014

    Article  PubMed  CAS  Google Scholar 

  28. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  29. Grigoryev S, Stewart AE, Kwon YT, Arfin SM, Bradshaw AR, Jenkins NA, Copeland NG, Varshavsky A (1996). A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J Biol Chem 271:28521–28532

    Article  PubMed  CAS  Google Scholar 

  30. Rai R, Kashina A (2005) Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proc Natl Acad Sci USA 102:10123–10128

    Article  PubMed  CAS  Google Scholar 

  31. Chao S, Chai KX, Chao L, Chao J (1990) Molecular cloning and primary structure of rat alpha-1-antitrypsin. Biochemistry 29:323–329

    Article  PubMed  CAS  Google Scholar 

  32. McLean JW, Fukazawa C, Taylor JM (1983) Rat apolipoprotein E mRNA. Cloning and sequencing of double-stranded cDNA. J Biol Chem 258:8993–9000

    PubMed  CAS  Google Scholar 

  33. Gordon JI, Smith DP, Andy R, Alpers DH, Schonfeld G, Strauss AW (1982) The primary translation product of rat intestinal apolipoprotein A-I mRNA is an unusual preproprotein. J Biol Chem 257:971–978

    PubMed  CAS  Google Scholar 

  34. Sliwkowski MB, Windmueller HG (1984) Rat liver and small intestine produce proapolipoprotein A-I which is slowly processed to apolipoprotein A-I in the circulation. J Biol Chem 259:6459–6465

    PubMed  CAS  Google Scholar 

  35. Yokoi T, Nagayama S, Kajiwara R, Kawaguchi Y, Horiuchi R, Kamataki T (1993) Identification of protein disulfide isomerase and calreticulin as autoimmune antigens in LEC strain of rats. Biochim Biophys Acta 1158:339–344

    PubMed  CAS  Google Scholar 

  36. Wellner D, Cheng KC, Muller-Eberhard U (1988) N-terminal amino acid sequences of the hemopexins from chicken, rat and rabbit. Biochem Biophys Res Commun 155:622–625

    Article  PubMed  CAS  Google Scholar 

  37. Chao J, Chai KX, Chen LM, Xiong W, Chao S, Woodley-Miller C, Wang LX, Lu HS, Chao L (1990b) Tissue kallikrein-binding protein is a serpin. I. Purification, characterization, and distribution in normotensive and spontaneously hypertensive rats. J Biol Chem 265:16394–16401

    CAS  Google Scholar 

  38. Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW (1987) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917:148–161

    PubMed  CAS  Google Scholar 

  39. LaDu MJ, Gilligan SM, Lukens JR, Cabana VG, Reardon CA, Van Eldik LJ, Holtzman DM (1998) Nascent astrocyte particles differ from lipoproteins in CSF. J Neurochem 70:2070–2081

    PubMed  CAS  Google Scholar 

  40. Roses AD, Einstein G, Gilbert J, Goedert M, Han SH, Huang D, Hulette C, Masliah E, Pericak-Vance MA, Saunders AM, Schmechel DE, Strittmatter WJ, Weisgraber KH, Xi PT (1996) Morphological, biochemical, and genetic support for an apolipoprotein E effect on microtubular metabolism. Ann NY Acad Sci 777:146–157

    Article  PubMed  CAS  Google Scholar 

  41. Roheim PS, Carey M, Forte T, Vega GL (1979) Apolipoproteins in human cerebrospinal fluid. Proc Natl Acad Sci USA 76:4646–4649

    Article  PubMed  CAS  Google Scholar 

  42. Borghini I, Barja F, Pometta D, James RW (1995) Characterization of subpopulations of lipoprotein particles isolated from human cerebrospinal fluid. Biochim Biophys Acta 1255:192–200

    PubMed  Google Scholar 

  43. de Vries HE, Breedveld B, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD (1995) High-density lipoprotein and cerebral endothelial cells in vitro: interactions and transport. Biochem Pharmacol 50:271–273

    Article  PubMed  Google Scholar 

  44. Mockel B, Zinke H, Flach R, Weiss B, Weiler-Guttler H, Gassen HG (1994) Expression of apolipoprotein A-I in porcine brain endothelium in vitro. J Neurochem 62:788–798

    Article  PubMed  CAS  Google Scholar 

  45. Speer CP, Rethwilm M, Gahr M (1988) Elastase-alpha 1-proteinase inhibitor: an early indicator of septicemia and bacterial meningitis in childhood. Adv Exp Med Biol 240:485–491

    PubMed  CAS  Google Scholar 

  46. Zuccarello M, Sawaya R, Ray MB (1987) Immunohistochemical demonstration of alpha-1-proteinase inhibitor in brain tumors. Cancer 60:804–809

    Article  PubMed  CAS  Google Scholar 

  47. Camborieux L, Bertrand N, Swerts JP (1998) Changes in expression and localization of hemopexin and its transcripts in injured nervous system: a comparison of central and peripheral tissues. Neuroscience 82:1039–1052

    Article  PubMed  CAS  Google Scholar 

  48. Chen W, Lu H, Dutt K, Smith A, Hunt DM, Hunt RC (1998) Expression of the protective proteins hemopexin and haptoglobin by cells of the neural retina. Exp Eye Res 67:83–93

    Article  PubMed  CAS  Google Scholar 

  49. Saso L, Leone MG, Mo MY, Grippa E, Cheng CY, Silvestrini B (1999) Differential changes in alpha-2-macroglobulin and hemopexin in brain and liver in response to acute inflammation. Biochemistry (Mosc) 64:839–844

    CAS  Google Scholar 

  50. Johnson S, Michalak M, Opas M, Eggleton P (2001) The ins and outs of calreticulin: from ER lumen to the extracellular space. Trends Cell Biol 11:122–129

    Article  PubMed  CAS  Google Scholar 

  51. Balzi E, Choder M, Chen WN, Varshavsky A, Goffeau A (1990) Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J Biol Chem 265:7464–7471

    PubMed  CAS  Google Scholar 

  52. Kwon YT, Kashina A, Varshavsky A (1999) Alternative splicing results in differential expression activity, and localization of two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol Cell Biol 19:182–193

    PubMed  CAS  Google Scholar 

  53. Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246–255

    Article  PubMed  CAS  Google Scholar 

  54. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 3:181–191

    Article  CAS  Google Scholar 

  55. Teckman JH, Burrows J, Hidvegi T, Schmidt B, Hale PD, Perlmutter DH (2001) The proteasome participates in degradation of mutant alpha-1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes. J Biol Chem 276:44865–44872

    Article  PubMed  CAS  Google Scholar 

  56. Duan H, Lin CY, Mazzone T (1997) Degradation of macrophage Apo E in a non-lysosomal compartment. Regulation by sterols. J Biol Chem 272:31156–31162

    Article  PubMed  CAS  Google Scholar 

  57. Wenner C, Lorkowski S, Engel T, Cullen P (2001) Apolipoprotein E in macrophages and hepatocytes is degraded via the proteasomal pathway. Biochem Biophys Res Commun 282:608–614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. H.S. Barra, and M.R Galiano for their invaluable and helpful discussions. This work was supported by grants from the ANPCyT–SeCyT (BID 802/OC-AR), CONICET, SECyT UNC.and from SECyT (Argentina)-ECOS (France). M.B.D. is CONICET fellow and S.B. is a Genome Express SA (France) fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Elena Hallak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decca, M.B., Bosc, C., Luche, S. et al. Protein Arginylation in Rat Brain Cytosol: A Proteomic Analysis. Neurochem Res 31, 401–409 (2006). https://doi.org/10.1007/s11064-005-9037-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-9037-z

Keywords

Navigation