Skip to main content

Arginylation in a Partially Purified Fraction of 150k × g Supernatants of Axoplasm and Injured Vertebrate Nerves

  • Protocol
Protein Arginylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1337))

Abstract

Transfer RNA-mediated posttranslational protein modification by arginine has been demonstrated in vitro in axoplasm extruded from the giant axons of squid and in injured and regenerating vertebrate nerves. In nerve and axoplasm, the highest activity is found in a fraction of a 150,000 × g supernatant containing high molecular weight protein/RNA complexes but lacking molecules of <5 kDa. Arginylation (and protein modification by other amino acids) is not found in more purified, reconstituted fractions. The data are interpreted as indicating that it is critical to recover the reaction components in high molecular weight protein/RNA complexes in order to maintain maximum physiological activity. The level of arginylation is greatest in injured and growing vertebrate nerves compared with intact nerves, suggesting a role for these reactions in nerve injury/repair and during axonal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lasek RJ, Dabrowski C, Nordlander R (1973) Analysis of axoplasmic RNA from invertebrate giant axons. Nat New Biol 244(136):162–165

    Article  CAS  PubMed  Google Scholar 

  2. Black MM, Lasek RJ (1977) The presence of transfer RNA in the axoplasm of the squid giant axon. J Neurobiol 8(3):229–237

    Article  CAS  PubMed  Google Scholar 

  3. Ingoglia NA, Giuditta A, Zanakis MF, Babigian A, Tasaki I, Chakraborty G, Sturman JA (1983) Incorporation of 3H-amino acids into proteins in a partially purified fraction of axoplasm: evidence for transfer RNA-mediated, post-translational protein modification in squid giant axons. J Neurosci 3(12):2463–2473

    CAS  PubMed  Google Scholar 

  4. Ingoglia NA (1979) 4S RNA is present in regenerating optic axons of goldfish. Science 206(4414):73–75

    Article  CAS  PubMed  Google Scholar 

  5. Lindquist TD, Ingoglia NA, Gould RM (1981) 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats. Brain Res 230(1-2):181–194

    Article  CAS  PubMed  Google Scholar 

  6. Sotelo-Silveira JR, Holt CE (2014) Introduction to the special issue on local protein synthesis in axons. Dev Neurobiol 74(3):207–209

    Article  PubMed  Google Scholar 

  7. Zanakis MF, Chakraborty G, Sturman JA, Ingoglia NA (1984) Posttranslational protein modification by amino acid addition in intact and regenerating axons of the rat sciatic nerve. J Neurochem 43(5):1286–1294

    Article  CAS  PubMed  Google Scholar 

  8. Baker PF, Schlaepfer WW (1978) Uptake and binding of calcium by axoplasm isolated from giant axons of Loligo and Myxicola. J Physiol 276:103–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Metuzals J (1969) Configuration of a filamentous network in the axoplasm of the squid (Loligo pealei L.) giant nerve fiber. J Cell Biol 43(3):480–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Espinoza-Lewis RA, Wang DZ (2012) MicroRNAs in heart development. Curr Top Dev Biol 100:279–317

    Article  CAS  PubMed  Google Scholar 

  11. Zalts H, Shomron N (2011) The impact of microRNAs on endocrinology. Pediatr Endocrinol Rev 8(4):354–362, quiz 362–3

    PubMed  Google Scholar 

  12. Boss IW, Renne R (2011) Viral miRNAs and immune evasion. Biochim Biophys Acta 1809(11-12):708–714

    Article  CAS  PubMed  Google Scholar 

  13. Kwak PB, Iwasaki S, Tomari Y (2010) The microRNA pathway and cancer. Cancer Sci 101(11):2309–2315

    Article  CAS  PubMed  Google Scholar 

  14. Yang M, Li Y, Padgett RW (2005) MicroRNAs: small regulators with a big impact. Cytokine Growth Factor Rev 16(4-5):387–393

    Article  PubMed  Google Scholar 

  15. Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ (2011) The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci 68(17):2859–2871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lehrbach NJ, Miska EA (2010) Regulation of pre-miRNA processing. Adv Exp Med Biol 700:67–75

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki Y, Gross C, Xing L, Goshima Y, Bassell GJ (2014) Identification of axon-enriched microRNAs localized to growth cones of cortical neurons. Dev Neurobiol 74(3):397–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Iyer AN, Bellon A, Baudet ML (2014) MicroRNAs in axon guidance. Front Cell Neurosci 8:78

    Article  PubMed Central  PubMed  Google Scholar 

  19. Yu M, Chakraborty G, Grabow M, Ingoglia NA (1994) Serine protease inhibitors block N-terminal arginylation of proteins by inhibiting the arginylation of tRNA in rat brains. Neurochem Res 19(1):105–110

    Article  CAS  PubMed  Google Scholar 

  20. Yu M, Grabow M, Ingoglia NA (1993) Isolation of a peptide that inhibits the posttranslational arginylation of proteins in rat brain. J Mol Neurosci 4(3):195–203

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Ingoglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ingoglia, N.A. (2015). Arginylation in a Partially Purified Fraction of 150k × g Supernatants of Axoplasm and Injured Vertebrate Nerves. In: Kashina, A. (eds) Protein Arginylation. Methods in Molecular Biology, vol 1337. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2935-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2935-1_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2934-4

  • Online ISBN: 978-1-4939-2935-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics