Skip to main content

Advanced Crystallographic Data Collection Protocols for Experimental Phasing

  • Protocol
Nucleic Acid Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1320))

Abstract

Experimental phasing by single- or multi-wavelength anomalous dispersion (SAD or MAD) has become the most popular method of de novo macromolecular structure determination. Continuous advances at third-generation synchrotron sources have enabled the deployment of rapid data collection protocols that are capable of recording SAD or MAD data sets. However, procedural simplifications driven by the pursuit of high throughput have led to a loss of sophistication in data collection strategies, adversely affecting measurement accuracy from the viewpoint of anomalous phasing. In this chapter, we detail optimized strategies for collecting high-quality data for experimental phasing, with particular emphasis on minimizing errors from radiation damage as well as from the instrument. This chapter also emphasizes data processing for “on-the-fly” decision-making during data collection, a critical process when data quality depends directly on information gathered while at the synchrotron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendrickson WA (2013) Evolution of diffraction methods for solving crystal structures. Acta Crystallogr A 69:51–59

    Article  CAS  PubMed  Google Scholar 

  2. Hendrickson WA (2014) Anomalous diffraction in crystallographic phase evaluation. Q Rev Biophys 47:49–93

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9:1665–1672

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Doublié S (1997) Preparation of selenomethionyl proteins for phase determination. Methods Enzymol 276:523–530

    Article  PubMed  Google Scholar 

  5. Dauter Z (2010) Carrying out an optimal experiment. Acta Crystallogr D 66:389–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ennifar E, Walter P, Dumas P (2003) A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res 31:2671–2682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Keel AY, Rambo RP, Batey RT, Kieft J (2007) A general strategy to solve the phase problem in RNA crystallography. Structure 15:761–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Henderson R (1990) Cryoprotection of protein crystals against radiation-damage in electron and X-ray diffraction. Proc R Soc B Biol Sci 241:6–8

    Article  CAS  Google Scholar 

  9. Hendrickson WA, Teeter MM (1981) Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 290:107–113

    Article  CAS  Google Scholar 

  10. Kahn R, Fourme R, Bosshard R, Chiadmi M, Risler JL, Dideberg O, Wery JP (1985) Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction. FEBS Lett 179:133–137

    Article  CAS  PubMed  Google Scholar 

  11. Hendrickson WA, Pähler A, Smith JL, Satow Y, Merritt EA, Phizackerley RP (1989) Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A 86:2190–2194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA (1991) Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254:1608–1615

    Article  CAS  PubMed  Google Scholar 

  13. Hendrickson WA, Ogata C (1997) Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol 276:494–523

    Article  CAS  Google Scholar 

  14. Rupp B (2009) Biomolecular crystallography: principles, practice, and application to structural biology. Garland Science, New York

    Google Scholar 

  15. Legrand P. xdsme. http://code.google.com/p/xdsme/

  16. Broennimann C, Eikenberry EF, Henrich B, Horisberger R, Huelsen G, Pohl E, Schmitt B, Schulze-Briese C, Suzuki M, Tomizaki T, Toyokawa H, Wagner A (2006) The PILATUS 1M detector. J Synchrotron Radiat 13:120–130

    Article  CAS  PubMed  Google Scholar 

  17. Walsh MA, Dementieva I, Evans G, Sanishvili R, Joachimiak A (1999) Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallogr D 55:1168–1173

    Article  CAS  PubMed  Google Scholar 

  18. Rice LM, Earnest TN, Brunger AT (2000) Single-wavelength anomalous diffraction phasing revisited. Acta Crystallogr D 56:1413–1420

    Article  CAS  PubMed  Google Scholar 

  19. Clemons WM, Brodersen DE, McCutcheon JP, May JL, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2001) Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. J Mol Biol 310:827–843

    Article  CAS  PubMed  Google Scholar 

  20. Voss JE, Vaney M-C, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA (2010) Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468:709–712

    Article  CAS  PubMed  Google Scholar 

  21. Liu Q, Dahmane T, Zhang Z, Assur Z, Brasch J, Shapiro L, Mancia F, Hendrickson WA (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Weinert T, Olieric V, Waltersperger S, Panepucci E, Chen L, Zhang H, Zhou D, Rose J, Ebihara A, Kuramitsu S, Li D, Howe N, Schnapp G, Pautsch A, Bargsten K, Prota AE, Surana P, Kottur J, Nair DT, Basolico F, Cecatiello V, Pasqualato S, Boland A, Weichenrieder O, Wang BC, Steinmetz MO, Caffrey M, Wang M (2014) Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 12(2):131–133

    Google Scholar 

  23. Dauter Z (2002) New approaches to high-throughput phasing. Curr Opin Struct Biol 12:674–678

    Article  CAS  PubMed  Google Scholar 

  24. Brockhauser S, Ravelli RBG, McCarthy AA (2013) The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments. Acta Crystallogr D 69:1241–1251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Waltersperger S, Olieric V, Pradervand C, Glettig W, Salathe M, Fuchs MR, Curtin A, Wang X, Ebner S, Panepucci E, Weinert T, Schulze-Briese C, Wang M (2015) PRIGo: a new multi-axis goniometer for macromolecular crystallography. J Synchrotron Radiat In Press

    Google Scholar 

  26. Alkire RW, Duke NEC, Rotella FJ (2008) Is your cold-stream working for you or against you ? An in-depth look at temperature and sample motion research papers. J Appl Crystallogr 41:1122–1133

    Article  CAS  Google Scholar 

  27. Mueller M, Wang M, Schulze-Briese C (2012) Optimal fine φ-slicing for single-photon-counting pixel detectors. Acta Crystallogr D 68:42–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Evans G, Pettifer R (2001) CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J Appl Crystallogr 34:82–86

    Article  CAS  Google Scholar 

  29. Kabsch W (2010) XDS. Acta Crystallogr D 66:125–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Leslie A, Powell H (2007) Processing diffraction data with Mosflm. Evol Meth Macromol Crystallogr NATO Sci II Math Phys Chem 245:41–51

    Article  Google Scholar 

  31. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data. Meth Enzymol 276:307–326

    Article  CAS  Google Scholar 

  32. Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, Womack T, Bricogne G (2011) Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D 67:293–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Winter G, Lobley CMC, Prince SM (2013) Decision making in xia2. Acta Crystallogr D 69:1260–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Diederichs K, McSweeney S, Ravelli RBG (2003) Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr D 59:903–909

    Article  PubMed  Google Scholar 

  35. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D 66:479–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pape T, Schneider TR (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr 37:843–844

    Article  CAS  Google Scholar 

  37. Vonrhein C, Blanc E, Roversi P, Bricogne G (2007) Automated structure solution with autoSHARP. Methods Mol Biol 364:215–230

    CAS  PubMed  Google Scholar 

  38. Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH, Hung LW (2009) Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D 65:582–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Skubák P, Pannu NS (2013) Automatic protein structure solution from weak X-ray data. Nat Commun 4:2777

    Article  PubMed Central  PubMed  Google Scholar 

  40. Dauter Z, Adamiak DA (2001) Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallogr D 57:990–995

    Article  CAS  PubMed  Google Scholar 

  41. Luo Z, Dauter M, Dauter Z (2014) Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal is sufficient for structure solution. Acta Crystallogr D 70:1790–1800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Liu Q, Guo Y, Chang Y, Cai Z, Assur Z, Mancia F, Greene MI, Hendrickson WA (2014) Multi-crystal native SAD analysis at 6 keV. Acta Crystallogr D 70:2544–2557

    Article  CAS  PubMed  Google Scholar 

  43. Liu Q, Liu Q, Hendrickson WA (2013) Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr D 69:1314–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. González A (2003) Optimizing data collection for structure determination. Acta Crystallogr D 59:1935–1942

    Article  PubMed  Google Scholar 

  45. Liu Q, Zhang Z, Hendrickson WA (2011) Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. Acta Crystallogr D 67:45–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. González A, Pédelacq J, Solà M, Gomis-Rüth FX, Coll M, Samama J, Benini S (1999) Two-wavelength MAD phasing: in search of the optimal choice of wavelengths. Acta Crystallogr D 55:1449–1458

    Article  PubMed  Google Scholar 

  47. Diederichs K (2010) Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallogr D 66:733–740

    Article  CAS  PubMed  Google Scholar 

  48. Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zeldin OB, Gerstel M, Garman EF (2013) RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J Appl Crystallogr 46:1225–1230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Oliéric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Finke, A.D., Panepucci, E., Vonrhein, C., Wang, M., Bricogne, G., Oliéric, V. (2016). Advanced Crystallographic Data Collection Protocols for Experimental Phasing. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics