Skip to main content

Cryogels with Affinity Ligands as Tools in Protein Purification

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

  • 3183 Accesses

Abstract

Affinity chromatography is one of the well-known separation techniques especially if high purity is desired. Introducing ligands on monolithic structure gives the possibility for purifying complex media such as plasma and crude extract. This chapter is focusing on the preparation of cryogels as monolithic column and immobilization of concanavalin A on its surface as ligand for capturing the glycoprotein horseradish peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cramer SM, Holstein MA (2011) Downstream bioprocessing: recent advances and future promise. Curr Opin Chem Eng 1:27–37

    Article  CAS  Google Scholar 

  2. Jungbauer A (2005) Chromatographic media for bioseparation. J Chromatogr A 1065:3–12

    Article  CAS  PubMed  Google Scholar 

  3. Billakanti JM, Fee CJ (2009) Characterization of cryogel monoliths for extraction of minor proteins from milk by cation exchange. Biotechnol Bioeng 103:1155–1163

    Article  CAS  PubMed  Google Scholar 

  4. Inoue Y, Sakai T, Kumagai H, Hanaoka Y (1997) High selective determination of bromate in ozonized water by using ion chromatography with postcolumn derivatization equipped with reagent preparation device. Anal Chim Acta 346:299–305

    Article  CAS  Google Scholar 

  5. Ruixia L, Jinlong G, Hongxiao T (2002) Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber. J Colloid Interf Sci 248:268–274

    Article  Google Scholar 

  6. Niu J, Zhu Y, Xie Y, Song LT, Shi L, Lan JJ, Liu BL, Li XK, Huang ZF (2014) Solid-phase polyethylene glycol conjugation using hydrophobic interaction chromatography. J Chromatogr A 1327:66–72

    Article  CAS  PubMed  Google Scholar 

  7. Arrua RD, Alvarez CII (2011) Macroporous monolithic supports for affinity chromatography. J Sep Sci 34:1974–1987

    CAS  PubMed  Google Scholar 

  8. Ayyar BV, Arora S, Murphy C, O’Kennedy R (2012) Affinity chromatography as a tool for antibody purification. Methods 56:116–129

    Article  CAS  PubMed  Google Scholar 

  9. Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schäfer F (2009) Immobilized-metal affinity chromatography (IMAC): a review. In: Burgess RR, Deutscher MP (eds) Methods in enzymology, vol 463. Academic, San Diego, CA, pp 439–473

    Google Scholar 

  10. Dainiak MB, Plieva F, Galaev IY, Hatti-Kaul R, Mattiasson B (2005) Cell chromatography: separation of different microbial cells using IMAC supermacroporous columns. Biotechnol Prog 21:644–649

    Article  CAS  PubMed  Google Scholar 

  11. Önnby L, Giorgi C, Plieva FM, Mattiasson B (2010) Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels. Biotechnol Prog 26:1295–1302

    Article  PubMed  Google Scholar 

  12. Sepsey A, Bacskay I, Felinger A (2014) Molecular theory of size exclusion chromatography for wide pore size distributions. J Chromatogr A 1331:52–60

    Article  CAS  PubMed  Google Scholar 

  13. Perçin I, Sağlar E, Yavuz H, Aksoz E, Denizli A (2011) Poly(hydroxyethyl methacrylate) based affinity cryogel for plasmid DNA purification. Int J Biol Macromol 48:577–582

    Article  PubMed  Google Scholar 

  14. Tetala KKR, Van Beek TA (2010) Bioaffinity chromatography on monolithic supports. J Sep Sci 33:422–438

    Article  CAS  PubMed  Google Scholar 

  15. Uygun M, Uygun DA, Özçalışkan E, Akgol S, Denizli A (2012) Concanavalin A immobilized poly(ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization. J Chromatogr B 887:73–78

    Article  Google Scholar 

  16. Hajizadeh S, Kirsebom H, Leistner A, Mattiasson B (2012) Composite cryogel with immobilized concanavalin A for affinity chromatography of glycoproteins. J Sep Sci 35:2978

    Article  CAS  PubMed  Google Scholar 

  17. Sadavarte R, Spearman M, Okun N, Butler M, Ghosh R (2014) Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography. Biotechnol Bioeng 111:1139–1149

    Article  CAS  PubMed  Google Scholar 

  18. Hage DS, Anguizola JA, Bi C, Li C, Matsuda R, Papastavros E, Pfaunmiller E, Vargas J, Zheng XW (2012) Pharmaceutical and biomedical applications for affinity chromatography: recent trends and developments. J Pharm Biomed 69:93–105

    Article  CAS  Google Scholar 

  19. Jimenez P, Cabrero P, Basterrechea JE, Tejero J, Cordoba-Diaz D, Girbes T (2013) Isolation and molecular characterization of two lectins from Dwarf Elder (Sambucus ebulus L.) blossoms related to the Sam n1 allergen. Toxins 5:1767–1778

    Google Scholar 

  20. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405:2133–2145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hajizadeh S, Xu C, Kirsebom H, Ye L, Mattiasson B (2013) Cryogelation of molecularly imprinted nanoparticles: a macroporous structure as affinity chromatography column for removal of beta-blockers from complex samples. J Chromatogr A 1274:6–12

    Article  CAS  PubMed  Google Scholar 

  22. Urh M, Simpson D, Zhao K (2009) Affinity chromatography: general methods. In: Burgess RR, Deutscher MP (eds) Methods in enzymology, vol 463. Academic, San Diego, CA, pp 417–438

    Google Scholar 

  23. Wang PG (ed) (2010) Monolithic chromatography and its modern applications. ILM Publications, Hertfordshire

    Google Scholar 

  24. Podgornik A, Yamamoto S, Peterka M, Krajnc NL (2013) Fast separation of large biomolecules using short monolithic columns. J Chromatogr B 927:80–89

    Article  CAS  Google Scholar 

  25. Sun S, Tang Y, Fu Q, Liu X, Guo L, Zhao YD, Chang C (2012) Monolithic cryogels made of agarose-chitosan composite and loaded with agarose beads for purification of immunoglobulin G. Int J Biol Macromol 50:1002–1007

    Article  CAS  PubMed  Google Scholar 

  26. Pons A, Casas L, Estop E, Molins E, Harris KDM, Xu M (2012) A new route to aerogels: monolithic silica cryogels. J Non-cryst Solids 358:461–469

    Article  CAS  Google Scholar 

  27. Odabaşı M, Baydemir G, Karataş M, Derazshamshir A (2010) Preparation and characterization of metal-chelated poly(HEMA-MAH) monolithic cryogels and their use for DNA adsorption. J Appl Polym Sci 116:1306–1312

    Google Scholar 

  28. Carriazo D, Pico F, Gutierrez MC, Rubio F, Rojo JM, del Monte F (2010) Block-copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J Mater Chem 20:773–780

    Article  CAS  Google Scholar 

  29. Izaak TI, Vodyankina OV (2009) Macroporous monolithic materials: synthesis, properties and application. Russ Chem Rev 78:77–88

    Article  CAS  Google Scholar 

  30. Kumar A, Bhardwaj A (2008) Methods in cell separation for biomedical application: cryogels as a new tool. Biomed Mater 3:1–11

    Article  CAS  Google Scholar 

  31. Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10:163–188

    Article  CAS  PubMed  Google Scholar 

  32. Lozinsky VI, Damshkaln LG, Brown R, Norton IT (2000) Study of cryostructuring of polymer systems. XIX. On the nature of intermolecular links in the cryogels of locust bean gum. Polym Int 49:1434–1443

    Article  CAS  Google Scholar 

  33. Jungbauer A, Hahn R (2004) Monoliths for fast bioseparation and bioconversion and their applications in biotechnology. J Sep Sci 27:767–778

    Article  CAS  PubMed  Google Scholar 

  34. Arvidsson P, Plieva FM, Savina IN, Lozinsky VI, Fexby S, Bülow L, Galaev IY, Mattiasson B (2002) Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns. J Chromatogr A 977:27–38

    Article  CAS  PubMed  Google Scholar 

  35. Plieva FM, Galaev IY, Mattiasson B (2009) Production and properties of cryogels by radical polymerization. In: Mattiasson B, Kumar A, Galaev IY (eds) Macroporous polymers. CRC Press, London, pp 23–47

    Chapter  Google Scholar 

  36. Lozinsky VI, Morozova SA, Vainerman ES, Titova EF, Shitlman MI, Belavtseva EM, Rogozhin SV (1989) Study of cryostructurization of polymer systems. 8. Characteristic features of the formation of crosslinked poly(acrylamide) cryogels under different thermal conditions. Acta Polym 40:8–15

    Article  Google Scholar 

  37. Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830

    Article  CAS  PubMed  Google Scholar 

  38. Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of super-macroporous polymer hydrogels. Polymer 50:1118–1123

    Article  CAS  Google Scholar 

  39. Sandeman SR, Gun'ko VM, Bakalinska OM, Howell CA, Zheng YS, Kartel MT, Phillips GJ, Mikhalovsky SV (2011) Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite. J Colloid Interf Sci 358:582–592

    Article  CAS  Google Scholar 

  40. Simoes MM, de Oliveira MG (2010) Poly(vinyl alcohol) films for topical delivery of S-nitrosoglutathione: effect fo freezing-thawing on the diffusion properties. J Biomed Mater Res B 93B:416–424

    Article  CAS  Google Scholar 

  41. Ricciardi R, Auriemma F, Gaillet C, De Rosa C (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516

    Article  CAS  Google Scholar 

  42. Kirsebom H, Mattiasson B, Galaev IY (2009) Building macroporous materials from micro-gels and microbes via one-step cryogelation. Langmuir 25:8462–8465

    Google Scholar 

  43. Yao K, Yun J, Shen S, Chen F (2007) In-situ graft-polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns. J Chromatogr A 1157:246–251

    Google Scholar 

  44. Plieva FM, Ekstrom P, Galaev IY, Mattiasson B (2008) Monolithic cryogels with open porous structure and unique double-continuous macroporous networks. Soft Matter 4:2418–2428

    Article  CAS  Google Scholar 

  45. Eichhorn T, Ivanov AE, Dainiak MB, Leistner A, Linsberger I, Jungvid H, Mikhalovsky SV, Weber V (2013) Macroporous composite cryogels with embedded polystyrene divinylbenzene microparticles for the adsorption of toxic metabolites from blood. J Chem 2013:1–8

    Article  Google Scholar 

  46. Li JK, Wang N, Wu XS (1998) Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery. J Control Release 56:117–126

    Article  CAS  PubMed  Google Scholar 

  47. Hassan CM, Peppas NA (2000) Cellular PVA hydrogels produced by freeze/thawing. J Appl Poly Sci 76:2075–2079

    Article  CAS  Google Scholar 

  48. Lee M, Bae H, Lee S, Chung NO, Lee H, Choi S, Hwang S, Lee J (2011) Freezing/thawing processing of PVA in the preparation of structured microspheres for protein drug delivery. Macromol Res 19:130–136

    Article  CAS  Google Scholar 

  49. Lozinsky VI, Damshkaln LG, Brown R, Norton IT (2000) Study of cryostructuration of polymer systems. XVIII. Freeze-thaw influence on water-solubilzed artificial mixtures of amylopectin and amylose. J Appl Polym Sci 78:371–381

    Article  CAS  Google Scholar 

  50. Hajizadeh S, Kirsebom H, Mattiasson B (2010) Characterization of macroporous carbon-cryostructured particle gel, an adsorbent for small organic molecules. Soft Matter 6:5562–5569

    Article  CAS  Google Scholar 

  51. Plieva FM, Bober B, Dainiak M, Galaev IY, Mattiasson B (2006) Macroporous polyacrylamide monolithic gels with immobilized metal affinity ligands: the effect of porous structure and ligand coupling chemistry on protein binding. J Mol Recognit 19:305–312

    Article  CAS  PubMed  Google Scholar 

  52. Akkaya B, Yavuz H, Candan F, Denizli A (2012) Concanavalin A immobilized magnetic poly(glycidyl methacrylate) beads for antibody purification. J Appl Polym Sci 125:1867–1874

    Article  CAS  Google Scholar 

  53. Becker WJ, Reeke GNJ, Wang JL, Cunningham BA, Edelman GM (1975) Covalent and 3-dimensional structure of Concanavalin A. 3. Structure of monomer and its interactions with metals and saccharides. J Biol Chem 250:1513–1524

    CAS  PubMed  Google Scholar 

  54. Bittiger H, Schnebli HP (1976) Concanavalin A as a tool. John Wiley & Sons, New York

    Google Scholar 

  55. Yavuz H, Ozden K, Kin EP, Denizli A (2009) Concanavalin A binding on PHEMA beads and their interactions with myeloma cells. J Macromol Sci A 46:163–169

    Article  CAS  Google Scholar 

  56. Dainiak MB, Galaev IY, Mattiasson B (2006) Affinity cryogel monoliths for screening for optimal separation conditions and chromatographic separation of cells. J Chromatogr A 1123:145–150

    Article  CAS  PubMed  Google Scholar 

  57. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic adic. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  58. Arends J (1979) Purification of peroxidase-conjugated antibody for enzyme immunoassay by affinity chromatography on Concanavalin A. J Immunol Methods 25:171–175

    Article  CAS  PubMed  Google Scholar 

  59. Trinder P (1969) Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol 22:246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Hajizadeh S (2012) Composite cryogels: Stationary phase for separation of complex media. PhD thesis, Lund University, Lund, Sweden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Mattiasson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hajizadeh, S., Mattiasson, B. (2015). Cryogels with Affinity Ligands as Tools in Protein Purification. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics