Skip to main content
Log in

Freezing/thawing processing of PVA in the preparation of structured microspheres for protein drug delivery

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Drug stability and sustained release issues are important areas in drug-delivery research. The sustained release of proteins can be achieved by their encapsulation with a hydrophobic polymer, but this requires the proteins to be protected from the harsh processing environments of organic solvents and mechanical force. Preencapsulation with poly(vinyl alcohol) (PVA) using a freeze/thaw method has been shown to allow successful protection and sustained release. This study examined the effects of freezing/thawing on PVA encapsulation in the preparation of PVA-PLGA composite particles. Freezing/thawing slightly improved the crystalline peaks and the heat of fusion of PVA, but more distinct differences were observed when the properties of the surface layers were probed by AFM. The hardness of particles’ surfaces increased with increasing number of freezing/thawing cycles, whereas the adhesion force with an AFM cantilever tip decreased. The mean particle size and entrapment efficiency decreased. These results suggest that surface hardening is the major mechanism responsible for the sustained release characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Sinha and A. Trehan, J. Control. Release, 90, 261 (2003).

    Article  CAS  Google Scholar 

  2. J. Cleland, Protein Delivery, 10, 1 (2002).

    Article  Google Scholar 

  3. J. Herrmann and R. Bodmeier, J. Control. Release, 36, 63 (1995).

    Article  CAS  Google Scholar 

  4. H. Zhao, K. Saatchi, and U. Hafeli, J. Magn. Magn. Mater., 321, 1356 (2009).

    Article  CAS  Google Scholar 

  5. O. Farokhzad, Expert Opinion on Drug Delivery, 5, 927 (2008).

    Article  CAS  Google Scholar 

  6. S. Putney and P. Burke, Nature Biotechnology, 16, 153 (1998).

    Article  CAS  Google Scholar 

  7. J. Li, N. Wang, and X. Wu, J. Control. Release, 56, 117 (1998).

    Article  CAS  Google Scholar 

  8. N. Wang, X. Wu, and J. Li, Pharm. Res., 16, 1430 (1999).

    Article  CAS  Google Scholar 

  9. K. Hong and G. Sun, J. Appl. Polym. Sci., 116, 2418 (2010).

    CAS  Google Scholar 

  10. N. Vrana, et al., J. Tissue Eng. Regen. M., 3, 567 (2009).

    Article  CAS  Google Scholar 

  11. M. M. Simöes and M. G. de Oliveira, J. Biomed. Mater. Res. Part B: Appl. Biomater., 93B, 416 (2010).

    Google Scholar 

  12. A. Szücs, T. Haraszti, I. Dékány, and J. H. Fendler, J. Phys. Chem. B, 105, 10579 (2001).

    Article  Google Scholar 

  13. E. R. Beach, G. W. Tormoen, J. Drelich, and R. Han, J. Colloid Interface Sci., 247, 84 (2002).

    Article  CAS  Google Scholar 

  14. M. Tortonese and M. Kirk, Proceeding of International Society for Optics and Photonics, 1997, vol. 3009, p53–60.

    CAS  Google Scholar 

  15. U. Sindel and I. Zimmermann, Powder Technol., 117, 247 (2001).

    Article  CAS  Google Scholar 

  16. M. Fuji, K. Machida, T. Takei, T. Watanabe, and M. Chikazawa, Langmuir, 15, 4584 (1999).

    Article  CAS  Google Scholar 

  17. X. Xiao and L. Qian, Langmuir, 16, 8153 (2000).

    Article  CAS  Google Scholar 

  18. V. Bérard, E. Lesniewska, C. Andrés, D. Pertuy, C. Laroche, and Y. Pourcelot, Int. J. Pharm., 232, 213 (2002).

    Article  Google Scholar 

  19. W. Ducker, T. Senden, and R. Pashley, Nature, 353, 239 (1991).

    Article  CAS  Google Scholar 

  20. I. Larson, C. J. Drummond, D. Y. C. Chan, and F. Grieser, J. Am. Chem. Soc., 115, 11885 (1993).

    Article  CAS  Google Scholar 

  21. J. Villarrubia, Surf. Sci., 321, 287 (1994).

    Article  CAS  Google Scholar 

  22. M. Louey, P. Mulvaney, and P. Stewart, J. Pharmaceut. Biomed. Anal., 25, 559 (2001).

    Article  CAS  Google Scholar 

  23. J. K. Eve, N. Patel, S. Y. Luk, S. J. Ebbens, and C. J. Roberts, Int. J. Pharm., 238, 17 (2002).

    Article  CAS  Google Scholar 

  24. J. E. Sader, I. Larson, P. Mulvaney, and L. R. White, Rev. Sci. Instrum., 66, 3789 (1995).

    Article  CAS  Google Scholar 

  25. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, Rev. Sci. Instrum., 64, 403 (1993).

    Article  CAS  Google Scholar 

  26. C. Hassan, J. Stewart, and N. Peppas, Eur. J. Pharm. Biopharm., 49, 161 (2000).

    Article  CAS  Google Scholar 

  27. C. Hassan and N. Peppas, Macromolecules, 33, 2472 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghwi Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Bae, H., Lee, S. et al. Freezing/thawing processing of PVA in the preparation of structured microspheres for protein drug delivery. Macromol. Res. 19, 130–136 (2011). https://doi.org/10.1007/s13233-011-0203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0203-7

Keywords

Navigation