Skip to main content

Native Mass Spectrometry: Towards High-Throughput Structural Proteomics

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1261))

Abstract

Native mass spectrometry (MS) has become a sensitive method for structural proteomics, allowing practitioners to gain insight into protein self-assembly, including stoichiometry and three-dimensional architecture, as well as complementary thermodynamic and kinetic aspects. Although MS is typically performed in vacuum, a body of literature has described how native solution-state structure is largely retained on the timescale of the experiment. Native MS offers the benefit that it requires substantially smaller quantities of a sample than traditional structural techniques such as NMR and X-ray crystallography, and is therefore well suited to high-throughput studies. Here we first describe the native MS approach and outline the structural proteomic data that it can deliver. We then provide practical details of experiments to examine the structural and dynamic properties of protein assemblies, highlighting potential pitfalls as well as principles of best practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shendure J, Aiden EL (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583–590

    Article  CAS  PubMed  Google Scholar 

  3. Benesch JLP, Ruotolo BT (2011) Mass spectrometry: come of age for structural and dynamical biology. Curr Opin Struct Biol 21:641–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Konermann L, Vahidi S, Sowole MA (2013) Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal Chem 86:213–232

    Article  PubMed  Google Scholar 

  5. Heck AJR (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5:927–933

    Article  CAS  PubMed  Google Scholar 

  6. Hyung S-J, Ruotolo BT (2012) Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 12:1547–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Konijnenberg A, Butterer A, Sobott F (2013) Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta 1834:1239–1256

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt C, Robinson CV (2014) Dynamic protein ligand interactions - insights from MS. FEBS J 281(8):1950–1964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sharon M (2013) Structural MS pulls its weight. Science 340:1059–1060

    Article  CAS  PubMed  Google Scholar 

  10. Beveridge R, Chappuis Q, Macphee C, Barran P (2013) Mass spectrometry methods for intrinsically disordered proteins. Analyst 138:32–42

    Article  CAS  PubMed  Google Scholar 

  11. Barrera NP, Robinson CV (2011) Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 80:247–271

    Article  CAS  PubMed  Google Scholar 

  12. Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422:216–225

    Article  CAS  PubMed  Google Scholar 

  13. Winston RL, Fitzgerald MC (1997) Mass spectrometry as a readout of protein structure and function. Mass Spectrom Rev 16:165–179

    Article  CAS  PubMed  Google Scholar 

  14. Benesch JLP, Ruotolo BT, Simmons DA, Robinson CV (2007) Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 107:544–3567

    Article  Google Scholar 

  15. Hilton GR, Benesch JLP (2012) Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry. J R Soc Interface 9:801–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Marcoux J, Robinson CV (2013) Twenty years of gas phase structural biology. Structure 21:1541–1550

    Article  CAS  PubMed  Google Scholar 

  17. Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23

    Article  CAS  PubMed  Google Scholar 

  18. Snijder J, Rose RJ, Veesler D et al (2013) Studying 18 MDa virus assemblies with native mass spectrometry. Angew Chem Int Ed 52:4020–4023

    Article  CAS  Google Scholar 

  19. Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294

    Article  CAS  PubMed  Google Scholar 

  20. Ruotolo BT, Robinson CV (2006) Aspects of native proteins are retained in vacuum. Curr Opin Chem Biol 10:402–408

    Article  CAS  PubMed  Google Scholar 

  21. Breuker K, McLafferty FW (2008) Stepwise evolution of protein native structure with electrospray into the gas phase, 10(-12) to 10(2) S. Proc Natl Acad Sci U S A 105:8145–18152

    Article  Google Scholar 

  22. Fenn J, Mann M, Meng C et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  23. Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85:2–9

    Article  CAS  PubMed  Google Scholar 

  24. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  CAS  PubMed  Google Scholar 

  25. Benesch JLP (2009) Collisional activation of protein complexes: picking up the pieces. J Am Soc Mass Spectrom 20:341–348

    Article  CAS  PubMed  Google Scholar 

  26. Shukla AK, Futrell JH (2000) Tandem mass spectrometry: dissociation of ions by collisional activation. J Mass Spectrom 35:1069–1090

    Article  CAS  PubMed  Google Scholar 

  27. Benesch JLP, Aquilina JA, Ruotolo BT et al (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13:597–605

    Article  CAS  PubMed  Google Scholar 

  28. Jurchen JC, Williams ER (2003) Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J Am Chem Soc 125:2817–2826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Taverner T, Hernández H, Sharon M et al (2008) Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc Chem Res 41:617–627

    Article  CAS  PubMed  Google Scholar 

  30. Aquilina JA, Benesch JLP, Bateman OA et al (2003) Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alpha B-crystallin. Proc Natl Acad Sci U S A 100:10611–10616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hall Z, Politis A, Robinson CV (2012) Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure 20:1596–1609

    Article  CAS  PubMed  Google Scholar 

  32. Wysocki VH, Jones CM, Galhena AS, Blackwell AE (2008) Surface-induced dissociation shows potential to be more informative than collision-induced dissociation for structural studies of large systems. J Am Soc Mass Spectrom 19:903–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Uetrecht C, Rose RJ, van Duijn E (2010) Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev 39:1633–1655

    Article  CAS  PubMed  Google Scholar 

  34. Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6:281–294

    Article  CAS  PubMed  Google Scholar 

  35. McLean JA (2009) The mass-mobility correlation redux: the conformational landscape of anhydrous biomolecules. J Am Soc Mass Spectrom 20:1775–1781

    Article  CAS  PubMed  Google Scholar 

  36. Politis A, Stengel F, Hall Z et al (2014) A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat Methods 11:403–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Thalassinos K, Pandurangan AP, Xu M et al (2013) Conformational states of macromolecular assemblies explored by integrative structure calculation. Structure 21:1500–1508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhong Y, Hyung SJ, Ruotolo BT (2012) Ion mobility-mass spectrometry for structural proteomics. Expert Rev Proteomics 9:47–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Giles K, Pringle SD, Worthington KR et al (2004) Applications of a travelling wave-based radio-frequency only stacked ring ion guide. Rapid Commun Mass Spectrom 18:2401–2414

    Article  CAS  PubMed  Google Scholar 

  40. McCammon MG, Scott DJ, Keetch CA (2002) Screening transthyretin amyloid fibril inhibitors: characterization of novel multiprotein, multiligand complexes by mass spectrometry. Structure 10:851–863

    Article  CAS  PubMed  Google Scholar 

  41. Hopper JT, Oldham NJ (2009) Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry: the effect of ligand binding on conformational stability. J Am Soc Mass Spectrom 20:1851–1858

    Article  CAS  PubMed  Google Scholar 

  42. Hyung SJ, Robinson CV, Ruotolo BT (2009) Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chem Biol 16:382–390

    Article  CAS  PubMed  Google Scholar 

  43. Rabuck JN, Hyung SJ, Ko KS et al (2013) Activation state-selective kinase inhibitor assay based on ion mobility-mass spectrometry. Anal Chem 85:6995–7002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sharon M, Robinson CV (2007) The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem 76:167–193

    Article  CAS  PubMed  Google Scholar 

  45. Chevreux G, Atmanene C, Lopez P, Ouazzani J, Van Dorsselaer A, Badet B, Badet-Denisot MA, Sanglier-Cianferani S (2011) Monitoring the dynamics of monomer exchange using electrospray mass spectrometry: the case of the dimeric glucosamine-6-phosphate synthase. J Am Soc Mass Spectrom 22:431–439

    Article  CAS  PubMed  Google Scholar 

  46. Keetch CA, Bromley EHC, McCammon MG et al (2005) L55P Transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers. J Biol Chem 280:41667–41674

    Article  CAS  PubMed  Google Scholar 

  47. Sobott F, Benesch JLP, Vierling E, Robinson CV (2002) Subunit exchange of multimeric protein complexes: real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J Biol Chem 277:38921–38929

    Article  CAS  PubMed  Google Scholar 

  48. Hilton GR, Hochberg GKA, Laganowsky A et al (2013) C-terminal interactions mediate the quaternary dynamics of alpha B-crystallin. Philos Trans R Soc Lond B Biol Sci 368(1617):20110405

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kozlovski VI, Donald LJ, Collado VM et al (2011) A TOF mass spectrometer for the study of noncovalent complexes. Int J Mass Spectrom 308:118–125

    Article  CAS  Google Scholar 

  50. Tahallah N, Pinkse M, Maier CS, Heck AJR (2001) The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun Mass Spectrom 15:596–601

    Article  CAS  PubMed  Google Scholar 

  51. Rose RJ, Damoc E, Denisov E, Makarov A, Heck AJR (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9:1084–1086

    Article  CAS  PubMed  Google Scholar 

  52. Lössl P, Snijder J, Heck AJR (2014) Boundaries of mass resolution in native mass spectrometry. J Am Soc Mass Spectrom 25(6):906–917

    Article  PubMed  Google Scholar 

  53. Sobott F, Hernandez H, McCammon MG (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74:1402–1407

    Article  CAS  PubMed  Google Scholar 

  54. van den Heuvel RHH, van Duijn E, Mazon H et al (2006) Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal Chem 78:7473–7483

    Article  PubMed  Google Scholar 

  55. Chernushevich IV, Thomson BA (2004) Collisional cooling of large ions in electrospray mass spectrometry. Anal Chem 76:1754–1760

    Article  CAS  PubMed  Google Scholar 

  56. Pringle SD, Giles K, Wildgoose JL et al (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12

    Article  CAS  Google Scholar 

  57. Li H, Wolff JJ, Van Orden SL, Loo JA (2013) Native top-down electrospray ionization-mass spectrometry of 158 kda protein complex by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 86:317–320

    Article  PubMed  Google Scholar 

  58. Bush MF, Hall Z, Giles K et al (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82:9557–9565

    Article  CAS  PubMed  Google Scholar 

  59. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726

    Article  CAS  PubMed  Google Scholar 

  60. Lorenzen K, van Duijn E (2001) Native mass spectrometry as a tool in structural biology. In: Current protocols in protein science. Wiley, New York

    Google Scholar 

  61. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp e1954

    Google Scholar 

  62. Sanglier S, Atmanene C, Chevreux G, Dorsselaer AV (2008) Nondenaturing mass spectrometry to study noncovalent protein/protein and protein/ligand complexes: technical aspects and application to the determination of binding stoichiometries. Methods Mol Biol 484:217–243

    Article  CAS  PubMed  Google Scholar 

  63. Yin S, Loo JA (2009) Mass spectrometry detection and characterisation of noncovalent protein complexes. Methods Mol Biol 492:273–282

    Article  CAS  PubMed  Google Scholar 

  64. Campuzano I, Giles K (2011) Nanospray ion mobility mass spectrometry of selected high mass species. Methods Mol Biol 790:57–70

    Article  CAS  PubMed  Google Scholar 

  65. Zhong Y, Hyung SJ, Ruotolo BT (2011) Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136:3534–3541

    Article  CAS  PubMed  Google Scholar 

  66. Ruotolo BT, Benesch JL, Sandercock AM et al (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152

    Article  CAS  PubMed  Google Scholar 

  67. Smith DP, Knapman TW, Campuzano I et al (2009) Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom (Chichester, Eng) 15:113–130

    Article  CAS  Google Scholar 

  68. Thalassinos K, Grabenauer M, Slade SE et al (2009) Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal Chem 81:248–254

    Article  CAS  PubMed  Google Scholar 

  69. Benesch JLP, Sobott F, Robinson CV (2003) Thermal dissociation of multimeric protein complexes by using nanoelectrospray mass spectrometry. Anal Chem 75:2208–2214

    Article  CAS  PubMed  Google Scholar 

  70. Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8:639–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hopper JT, Yu YT, Li D et al (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10:1206–1208

    Article  CAS  PubMed  Google Scholar 

  72. Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem 84:9841–9847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Campana JE, Colton RJ, Wyatt JR et al (1984) Ultra-high mass spectrometry. Appl Spectrosc 38:430–432

    Article  CAS  Google Scholar 

  74. Van Pelt CK, Zhang S, Henion JD (2002) Characterization of a fully automated nanoelectrospray system with mass spectrometric detection for proteomic analyses. J Biomol Tech 13:72–84

    PubMed Central  PubMed  Google Scholar 

  75. Zhong Y, Feng J, Ruotolo BT (2013) Robotically assisted titration coupled to ion mobility-mass spectrometry reveals the interface structures and analysis parameters critical for multiprotein topology mapping. Anal Chem 85:11360–11368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Allen SJ, Schwartz AM, Bush MF (2013) Effects of polarity on the structures and charge states of native-like proteins and protein complexes in the gas phase. Anal Chem 85:12055–12061

    Article  CAS  PubMed  Google Scholar 

  77. Hopper JT, Sokratous K, Oldham NJ (2012) Charge state and adduct reduction in electrospray ionization-mass spectrometry using solvent vapor exposure. Anal Biochem 421:788–790

    Article  CAS  PubMed  Google Scholar 

  78. Bagal D, Kitova EN, Liu L et al (2009) Gas phase stabilization of noncovalent protein complexes formed by electrospray ionization. Anal Chem 81:7801–7806

    Article  CAS  PubMed  Google Scholar 

  79. Painter AJ, Jaya N, Basha E et al (2008) Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. Chem Biol 15:246–253

    Article  CAS  PubMed  Google Scholar 

  80. Baldwin AJ, Lioe H, Robinson CV et al (2011) alphaB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. J Mol Biol 413:297–309

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin L. P. Benesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kondrat, F.D.L., Struwe, W.B., Benesch, J.L.P. (2015). Native Mass Spectrometry: Towards High-Throughput Structural Proteomics. In: Owens, R. (eds) Structural Proteomics. Methods in Molecular Biology, vol 1261. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2230-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2230-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2229-1

  • Online ISBN: 978-1-4939-2230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics