Skip to main content
Log in

Boundaries of Mass Resolution in Native Mass Spectrometry

  • Critical Insight
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)–protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Matsuo, T.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)

    Article  CAS  Google Scholar 

  2. Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987)

    Article  CAS  Google Scholar 

  3. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989)

    Article  CAS  Google Scholar 

  4. Marshall, A.G., Hendrickson, C.L.: High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 1, 579–599 (2008)

    Article  CAS  Google Scholar 

  5. McNaught, A.D., Wilkinson, A.: Compendium of chemical terminology. IUPAC recommendations, 2nd edn, pp. 1295–1296. Blackwell Science, Oxford (1997)

  6. Sparkman, O.D.: Mass spectrometry desk reference, 2nd edn, pp. 1–198. Global View Pub, Pittsburgh (2006)

  7. Murray, K.K., Boyd, R.K., Eberlin, M.N., Langley, G.J., Li, L., Naito, Y.: Definitions of terms relating to mass spectrometry (IUPAC recommendations 2013). Pure Appl. Chem. 85, 1515–1609 (2013)

    Article  CAS  Google Scholar 

  8. Miladinović, S.M., Kozhinov, A.N., Gorshkov, M.V., Tsybin, Y.O.: On the utility of isotopic fine structure mass spectrometry in protein identification. Anal. Chem. 84, 4042–4051 (2012)

    Article  Google Scholar 

  9. Valeja, S.G., Kaiser, N.K., Xian, F., Hendrickson, C.L., Rouse, J.C., Marshall, A.G.: Unit mass baseline resolution for an intact 148 kDa therapeutic monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 83, 8391–8395 (2011)

    Article  CAS  Google Scholar 

  10. Shaw, J.B., Brodbelt, J.S.: Extending the isotopically resolved mass range of Orbitrap mass spectrometers. Anal. Chem. 85, 8313–8318 (2013)

    Article  CAS  Google Scholar 

  11. Andrews, G.L., Simons, B.L., Young, J.B., Hawkridge, A.M., Muddiman, D.C.: Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal. Chem. 83, 5442–5446 (2011)

    Article  CAS  Google Scholar 

  12. Holčapek, M., Jirásko, R., Lísa, M.: Recent developments in liquid chromatography-mass spectrometry and related techniques. J. Chromatogr. A 1259, 3–15 (2012)

    Article  Google Scholar 

  13. Lee, J., Chen, H., Liu, T., Berkman, C.E., Reilly, P.T.A.: High resolution time-of-flight mass analysis of the entire range of intact singly-charged proteins. Anal. Chem. 83, 9406–9412 (2011)

    Article  CAS  Google Scholar 

  14. Pelander, A., Decker, P., Baessmann, C., Ojanperä, I.: Evaluation of a high resolving power time-of-flight mass spectrometer for drug analysis in terms of resolving power and acquisition rate. J. Am. Soc. Mass Spectrom. 22, 379–385 (2011)

    Article  CAS  Google Scholar 

  15. Gordiyenko, Y., Robinson, C.V.: The emerging role of MS in structure elucidation of protein–nucleic acid complexes. Biochem. Soc. Trans. 36, 723–731 (2008)

    Article  CAS  Google Scholar 

  16. Heck, A.J.R.: Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008)

    Article  CAS  Google Scholar 

  17. Sharon, M.: Structural MS pulls its weight. Science 340, 1059–1060 (2013)

    Article  CAS  Google Scholar 

  18. Zhang, Y., Deng, L., Kitova, E.N., Klassen, J.S.: Dissociation of multisubunit protein–ligand complexes in the gas phase. Evidence for ligand migration. J. Am. Soc. Mass Spectrom. 24, 1573–1583 (2013)

    Article  CAS  Google Scholar 

  19. Marcoux, J., Wang, S.C., Politis, A., Reading, E., Ma, J., Biggin, P.C., Zhou, M., Tao, H., Zhang, Q., Chang, G., Morgner, N., Robinson, C.V.: Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc. Natl. Acad. Sci. U. S. A. 110, 9704–9709 (2013)

    Article  CAS  Google Scholar 

  20. Zhou, M., Sandercock, A.M., Fraser, C.S., Ridlova, G., Stephens, E., Schenauer, M.R., Yokoi-Fong, T., Barsky, D., Leary, J.A., Hershey, J.W., Doudna, J.A., Robinson, C.V.: Mass spectrometry special feature: mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl. Acad. Sci. U. S. A. 105, 18139–18144 (2008)

    Article  CAS  Google Scholar 

  21. Staals, R.H., Agari, Y., Maki-Yonekura, S., Zhu, Y., Taylor, D.W., van Duijn, E., Barendregt, A., Vlot, M., Koehorst, J.J., Sakamoto, K., Masuda, A., Dohmae, N., Schaap, P.J., Doudna, J.A., Heck, A.J., Yonekura, K., van der Oost, J., Shinkai, A.: Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus. Mol. Cell. 52, 135–145 (2013)

    Article  CAS  Google Scholar 

  22. Snijder, J., Rose, R.J., Veesler, D., Johnson, J.E., Heck, A.J.R.: Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. 52, 4020–4023 (2013)

    Article  CAS  Google Scholar 

  23. Rosati, S., Rose, R.J., Thompson, N.J., van Duijn, E., Damoc, E., Denisov, E., Makarov, A., Heck, A.J.R.: Exploring an Orbitrap analyzer for the characterization of intact antibodies by native mass spectrometry. Angew. Chem. Int. Ed. 51, 12992–12996 (2012)

    Article  CAS  Google Scholar 

  24. Videler, H., Ilag, L.L., McKay, A.R., Hanson, C.L., Robinson, C.V.: Mass spectrometry of intact ribosomes. FEBS Lett. 579, 943–947 (2005)

    Article  CAS  Google Scholar 

  25. Keetch, C.A., Bromley, E.H., McCammon, M.G., Wang, N., Christodoulou, J., Robinson, C.V.: L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers. J. Biol. Chem. 280, 41667–41674 (2005)

    Article  CAS  Google Scholar 

  26. McKay, A.R., Ruotolo, B.T., Ilag, L.L., Robinson, C.V.: Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J. Am. Chem. Soc. 128, 11433–11442 (2006)

    Article  CAS  Google Scholar 

  27. Aquilina, J.A., Benesch, J.L.P., Bateman, O.A., Slingsby, C., Robinson, C.V.: Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc. Natl. Acad. Sci. U.S.A. 100, 10611–10616 (2003)

    Article  CAS  Google Scholar 

  28. Baldwin, A.J., Lioe, H., Hilton, G.R., Baker, L.A., Rubinstein, J.L., Kay, L.E., Benesch, J.L.: The polydispersity of αB-crystallin is rationalized by an interconverting polyhedral architecture. Structure 19, 1855–1863 (2011)

    Article  CAS  Google Scholar 

  29. van den Heuvel, R.H.H., van Duijn, E., Mazon, H., Synowsky, S.A., Lorenzen, K., Versluis, C., Brouns, S.J.J., Langridge, D., van der Oost, J., Hoyes, J., Heck, A.J.R.: Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78, 7473–7483 (2006)

    Article  Google Scholar 

  30. Sobott, F., Hernández, H., McCammon, M.G., Tito, M.A., Robinson, C.V.: A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002)

    Article  CAS  Google Scholar 

  31. Chernushevich, I.V., Thomson, B.A.: Collisional cooling of large ions in electrospray mass spectrometry. Anal. Chem. 76, 1754–1760 (2004)

    Article  CAS  Google Scholar 

  32. Kozlovski, V., Donald, L., Collado, V., Spicer, V., Loboda, A., Chernushevich, I., Ens, W., Standing, K.: A TOF mass spectrometer for the study of noncovalent complexes. Int. J. Mass Spectrom. 308, 118–125 (2011)

    Article  CAS  Google Scholar 

  33. Rose, R.J., Damoc, E., Denisov, E., Makarov, A., Heck, A.J.R.: High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012)

    Article  CAS  Google Scholar 

  34. Kaiser, N.K., Quinn, J.P., Blakney, G.T., Hendrickson, C.L., Marshall, A.G.: A novel 9.4 Tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range. J. Am. Soc. Mass Spectrom. 22, 1343–1351 (2011)

    Article  CAS  Google Scholar 

  35. Chen, X., Westphall, M.S., Smith, L.M.: Mass spectrometric analysis of DNA mixtures: instrumental effects responsible for decreased sensitivity with increasing mass. Anal. Chem. 75, 5944–5952 (2003)

    Article  CAS  Google Scholar 

  36. Zubarev, R.A., Makarov, A.: Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (2013)

    Article  CAS  Google Scholar 

  37. Benesch, J.L.P., Ruotolo, B.T., Sobott, F., Wildgoose, J., Gilbert, A., Bateman, R., Robinson, C.V.: Quadrupole-time-of-flight mass spectrometer modified for higher-energy dissociation reduces protein assemblies to peptide fragments. Anal. Chem. 81, 1270–1274 (2009)

    Article  CAS  Google Scholar 

  38. Uetrecht, C., Rose, R.J., van Duijn, E., Lorenzen, K., Heck, A.J.R.: Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655 (2010)

    Article  CAS  Google Scholar 

  39. Barrera, N.P., Di Bartolo, N., Booth, P.J., Robinson, C.V.: Micelles protect membrane complexes from solution to vacuum. Science 321, 243–246 (2008)

    Article  CAS  Google Scholar 

  40. Perry, R.H., Cooks, R.G., Noll, R.J.: Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27, 661–699 (2008)

    Article  CAS  Google Scholar 

  41. Easterling, M.L., Mize, T.H., Amster, I.J.: Routine part-per-million mass accuracy for high-mass ions: space-charge effects in MALDI FT-ICR. Anal. Chem. 71, 624–632 (1999)

    Article  CAS  Google Scholar 

  42. Ledford, E.B., Rempel, D.L., Gross, M.L.: Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 56, 2744–2748 (1984)

    Article  CAS  Google Scholar 

  43. Schweikhard, L., Ziegler, J., Bopp, H., Lützenkirchen, K.: The trapping condition and a new instability of the ion motion in the ion cyclotron resonance trap. Int. J. Mass Spectrom. Ion Process. 141, 77–90 (1995)

    Article  CAS  Google Scholar 

  44. Hofstadler, S.A., Bruce, J.E., Rockwood, A.L., Anderson, G.A., Winger, B.E., Smith, R.D.: Isotopic beat patterns in Fourier transform ion cyclotron resonance mass spectrometry: implications for high resolution mass measurements of large biopolymers. Int. J. Mass Spectrom. Ion Process. 132, 109–127 (1994)

    Article  CAS  Google Scholar 

  45. Scigelova, M., Hornshaw, M., Giannakopulos, A., Makarov, A.: Fourier transform mass spectrometry. Mol. Cell. Proteomics 10, 1–19 (2011)

    Article  Google Scholar 

  46. Makarov, A., Denisov, E.: Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1486–1495 (2009)

    Article  CAS  Google Scholar 

  47. Zhang, H., Cui, W., Wen, J., Blankenship, R.E., Gross, M.L.: Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Anal. Chem. 83, 5598–5606 (2011)

    Article  CAS  Google Scholar 

  48. Zhang, H., Cui, W., Wen, J., Blankenship, R.E., Gross, M.L.: Native electrospray and electron-capture dissociation in FTICR mass spectrometry provide top-down sequencing of a protein component in an intact protein assembly. J. Am. Soc. Mass Spectrom. 21, 1966–1968 (2010)

    Article  CAS  Google Scholar 

  49. Lermyte, F., Konijnenberg, A., Williams, J.P., Brown, J.M., Valkenborg, D., Sobott, F.: ETD allows for native surface mapping of a 150kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument. J. Am. Soc. Mass Spectrom. 25, 343–350 (2014)

    Article  CAS  Google Scholar 

  50. Belov, M.E., Damoc, E., Denisov, E., Compton, P.D., Horning, S., Makarov, A.A., Kelleher, N.L.: From protein complexes to subunit backbone fragments: a multi-stage approach to native mass spectrometry. Anal. Chem. 85, 11163–11173 (2013)

    Article  CAS  Google Scholar 

  51. Rosati, S., van den Bremer, E.T.J., Schuurman, J., Parren, P., Kamerling, J., Heck, A.J.R.: In-depth qualitative and quantitative analysis of composite glycosylation profiles and other micro-heterogeneity on intact monoclonal antibodies by high-resolution native mass spectrometry using a modified Orbitrap. MAbs 5, 917–924 (2013)

    Article  Google Scholar 

  52. Rosati, S., Thompson, N.J., Barendregt, A., Hendriks, L.J.A., Bakker, A.B.H., de Kruif, J., Throsby, M., van Duijn, E., Heck, A.J.R.: Qualitative and semiquantitative analysis of composite mixtures of antibodies by native mass spectrometry. Anal. Chem. 84, 7227–7232 (2012)

    Article  CAS  Google Scholar 

  53. Boldin, I.A., Nikolaev, E.N.: Fourier transform ion cyclotron resonance cell with dynamic harmonization of the electric field in the whole volume by shaping of the excitation and detection electrode assembly. Rapid Commun. Mass Spectrom. 25, 122–126 (2011)

    Article  CAS  Google Scholar 

  54. Nikolaev, E.N., Boldin, I.A., Jertz, R., Baykut, G.: Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 22, 1125–1133 (2011)

    Article  CAS  Google Scholar 

  55. Li, H., Wolff, J.J., van Orden, S.L., Loo, J.A.: Native top-down electrospray ionization-mass spectrometry of 158 kDa protein complex by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 317–320 (2014)

    Article  CAS  Google Scholar 

  56. Tahallah, N., Pinkse, M., Maier, C.S., Heck, A.J.R.: The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun. Mass Spectrom. 15, 596–601 (2001)

    Article  CAS  Google Scholar 

  57. Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Radial stratification of ions as a function of mass to charge ratio in collisional cooling radio frequency multipoles used as ion guides or ion traps. Rapid Commun. Mass Spectrom. 14, 1907–1913 (2000)

    Article  CAS  Google Scholar 

  58. Lee, J., Reilly, P.T.A.: Limitation of time-of-flight resolution in the ultra high mass range. Anal. Chem. 83, 5831–5833 (2011)

    Article  CAS  Google Scholar 

  59. Lewin, M., Guilhaus, M., Wildgoose, J., Hoyes, J., Bateman, B.: Ion dispersion near parallel wire grids in orthogonal acceleration time-of-flight mass spectrometry: predicting the effect of the approach angle on resolution. Rapid Commun. Mass Spectrom. 16, 609–615 (2002)

    Article  CAS  Google Scholar 

  60. Mann, M., Meng, C.K., Fenn, J.B.: Interpreting mass spectra of multiply charged ions. Anal. Chem. 61, 1702–1708 (1989)

    Article  CAS  Google Scholar 

  61. Senko, M.W., Beu, S.C., McLafferty, F.W.: Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 6, 229–233 (1995)

    Article  CAS  Google Scholar 

  62. Horn, D.M., Zubarev, R.A., McLafferty, F.W.: Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J. Am. Soc. Mass Spectrom. 11, 320–332 (2000)

    Article  CAS  Google Scholar 

  63. Kaur, P., O’Connor, P.B.: Algorithms for automatic interpretation of high resolution mass spectra. J. Am. Soc. Mass Spectrom. 17, 459–468 (2006)

    Article  CAS  Google Scholar 

  64. Frahm, J.L., Mason, C.J., Muddiman, D.C.: Utility of accurate monoisotopic mass measurements to confidently identify lambda exonuclease generated single-stranded amplicons containing 7-deaza analogs by electrospray ionization FT-ICR mass spectrometry. Int. J. Mass Spectrom. 234, 79–87 (2004)

    Article  CAS  Google Scholar 

  65. Zhang, H., Cui, W., Gross, M.L., Blankenship, R.E.: Native mass spectrometry of photosynthetic pigment–protein complexes. FEBS Lett. 587, 1012–1020 (2013)

    Article  CAS  Google Scholar 

  66. Lorenzen, K., Versluis, C., van Duijn, E., van den Heuvel, R.H.H., Heck, A.J.R.: Optimizing macromolecular tandem mass spectrometry of large noncovalent complexes using heavy collision gases. Int. J. Mass Spectrom. 268, 198–206 (2007)

    Article  CAS  Google Scholar 

  67. Sobott, F., Robinson, C.V.: Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. Int. J. Mass Spectrom. 236, 25–32 (2004)

    Article  CAS  Google Scholar 

  68. Benesch, J.L.P.: Collisional activation of protein complexes: picking up the pieces. J. Am. Soc. Mass Spectrom. 20, 341–348 (2009)

    Article  CAS  Google Scholar 

  69. Tolić, L.P., Bruce, J.E., Lei, Q.P., Anderson, G.A., Smith, R.D.: In-trap cleanup of proteins from electrospray ionization using soft sustained off-resonance irradiation with Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 70, 405–408 (1998)

    Article  Google Scholar 

  70. Ruotolo, B.T., Hyung, S.-J., Robinson, P.M., Giles, K., Bateman, R.H., Robinson, C.V.: Ion mobility-mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew. Chem. Int. Ed. 46, 8001–8004 (2007)

    Article  CAS  Google Scholar 

  71. Sun, N., Soya, N., Kitova, E.N., Klassen, J.S.: Nonspecific interactions between proteins and charged biomolecules in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 472–481 (2010)

    Article  CAS  Google Scholar 

  72. Freeke, J., Robinson, C.V., Ruotolo, B.T.: Residual counter ions can stabilise a large protein complex in the gas phase. Int. J. Mass Spectrom. 298, 91–98 (2010)

    Article  CAS  Google Scholar 

  73. Dyachenko, A., Gruber, R., Shimon, L., Horovitz, A., Sharon, M.: Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 110, 7235–7239 (2013)

    Article  CAS  Google Scholar 

  74. Smith, A.M., Jahn, T.R., Ashcroft, A.E., Radford, S.E.: Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry. J. Mol. Biol. 364, 9–19 (2006)

    Article  CAS  Google Scholar 

  75. Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.-J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)

    Article  CAS  Google Scholar 

  76. Kłoniecki, M., Jabłonowska, A., Poznański, J., Langridge, J., Hughes, C., Campuzano, I., Giles, K., Dadlez, M.: Ion mobility separation coupled with MS detects two structural states of Alzheimer's Disease Aβ1-40 peptide oligomers. J. Mol. Biol. 407, 110–124 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work, and in particular PL and AJRH, has been supported by the ManiFold project, grant agreement number 317371, and in part by the PRIME-XS project, grant agreement number 262067, both funded by the European Union 7th Framework Programme. The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative, is acknowledged for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. R. Heck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lössl, P., Snijder, J. & Heck, A.J.R. Boundaries of Mass Resolution in Native Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 906–917 (2014). https://doi.org/10.1007/s13361-014-0874-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0874-3

Key words

Navigation