Skip to main content

Overview and Challenges of Molecular Technologies in the Veterinary Microbiology Laboratory

  • Protocol
  • First Online:
Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1247))

Abstract

Terrestrial, aquatic, and aerial animals, either domestic or wild, humans, and plants all face similar health threats caused by infectious agents. Multifaceted anthropic pressure caused by an increasingly growing and resource-demanding human population has affected biodiversity at all scales, from the DNA molecule to the pathogen, to the ecosystem level, leading to species declines and extinctions and, also, to host-pathogen coevolution processes.

Technological developments over the last century have also led to quantic jumps in laboratorial testing that have highly impacted animal health and welfare, ameliorated animal management and animal trade, safeguarded public health, and ultimately helped to “secure” biodiversity. In particular, the field of molecular diagnostics experienced tremendous technical progresses over the last two decades that significantly have contributed to our ability to study microbial pathogens in the clinical and research laboratories. This chapter highlights the strengths, weaknesses, opportunities, and threats (or challenges) of molecular technologies in the framework of a veterinary microbiology laboratory, in view of the latest advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes MD (2013) Molecular diagnostics, market trends and outlook. Enterprise Analysis Corporation (www.eacorp.com), Stamford, United States

  2. Anonymous (2014) Veterinary diagnostics market by products (clinical chemistry, hematology analyzers, molecular diagnostics, immunodiagnostics, diagnostics imaging), by animals (companion, food-producing, dog, livestock, poultry, swine): global forecast to 2018. Markets and Markets, Dallas, United States (Executive Summary)

    Google Scholar 

  3. Dorman MA, Blair CD, Collins JK et al (1985) Detection of bovine herpesvirus 1 DNA immobilized on nitrocellulose by hybridization with biotinylated DNA probes. J Clin Microbiol 22:990–995

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Viseshakul N, Panyim S (1990) Specific DNA probe for the sensitive detection of Trypanosoma evansi. Southeast Asian J Trop Med Public Health 21:21–27

    CAS  PubMed  Google Scholar 

  5. Almeida A, Albuquerque P, Araújo R, Ribeiro N, Tavares F (2013) Detection and discrimination of common bovine mastitis-causing streptococci. Vet Microbiol 164:370–377

    Article  CAS  PubMed  Google Scholar 

  6. Saiki RK, Scharf S, Faloona F et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  7. Kawasaki ES, Clark SS, Coyne MY et al (1988) Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci U S A 85:5698–5702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Belák S, Ballagi-Pordány A, Flensburg J et al (1989) Detection of pseudorabies virus DNA sequences by the polymerase chain reaction. Arch Virol 108:279–286

    Article  PubMed  Google Scholar 

  9. Biswas B, Mukherjee D, Mattingly-Napier BL et al (1991) Diagnostic application of polymerase chain reaction for detection of Ehrlichia risticii in equine monocytic ehrlichiosis (Potomac horse fever). J Clin Microbiol 29:2228–2233

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ballagi-Pordány A, Klingeborn B, Flensburg J et al (1990) Equine herpesvirus type 1: detection of viral DNA sequences in aborted fetuses with the polymerase chain reaction. Vet Microbiol 22:373–381

    Article  PubMed  Google Scholar 

  11. Wheeler R, Wilmore H, Savva D et al (1990) Diagnosis of ovine toxoplasmosis using PCR. Vet Rec 126:249

    CAS  PubMed  Google Scholar 

  12. Figueroa JV, Chieves LP, Johnson GS et al (1992) Detection of Babesia bigemina-infected carriers by polymerase chain reaction amplification. J Clin Microbiol 30:2576–2582

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  14. Williams PM (2009) The beginnings of real-time PCR. Clin Chem 55:833–834

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann B, Beer M, Reid SM et al (2009) A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol 139:1–23

    Article  CAS  PubMed  Google Scholar 

  16. Costa P, Ferreira AS, Amaro A et al (2013) Enhanced detection of tuberculous mycobacteria in animal tissues using a semi-nested probe-based real-time PCR. PLoS One 8:e81337

    Article  PubMed Central  PubMed  Google Scholar 

  17. Santos M, Soares R, Costa P et al (2013) Revisiting the Tams1-encoding gene as a species-specific target for the molecular detection of Theileria annulata in bovine blood samples. Ticks Tick Borne Dis 4:72–77

    Article  PubMed  Google Scholar 

  18. Lau LT, Reid SM, King DP et al (2008) Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification (NASBA). Vet Microbiol 126:101–110

    Article  CAS  PubMed  Google Scholar 

  19. Chowdry VK, Luo Y, Widén F et al (2014) Development of a loop-mediated isothermal amplification assay combined with a lateral flow dipstick for rapid and simple detection of classical swine fever virus in the field. J Virol Methods 197:14–18

    Article  CAS  PubMed  Google Scholar 

  20. Yamazaki W, Mioulet V, Murray L et al (2013) Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus. J Virol Methods 192:18–24

    Article  CAS  PubMed  Google Scholar 

  21. Pérez-Sancho M, García-Seco T, Arrogante L et al (2013) Development and evaluation of an IS711-based loop mediated isothermal amplification method (LAMP) for detection of Brucella spp. on clinical samples. Res Vet Sci 95:489–494

    Article  PubMed  Google Scholar 

  22. Gubbels JM, de Vos AP, van der Weide et al (1999) Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J Clin Microbiol 37:1782–1789

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Gomes J, Soares R, Santos M et al (2013) Detection of Theileria and Babesia infections amongst asymptomatic cattle in Portugal. Ticks Tick Borne Dis 4:148–151

    Article  PubMed  Google Scholar 

  24. Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Matos F, Cunha MV, Canto A, Albuquerque T, Amado A, Botelho A (2010) Snapshot of Mycobacterium bovis and Mycobacterium caprae infections in livestock in an area with a low incidence of bovine tuberculosis. J Clin Microbiol 48:4337–4339

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schnee C, Schulsse S, Hotzel H et al (2012) A novel rapid DNA microarray assay enables identification of 37 Mycoplasma species and highlights multiple Mycoplasma infections. PLoS One 7:e33237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Boonsilp S, Thaipadungpanit J, Amornchai P et al (2013) A single multilocus sequence typing (MLST) scheme for seven pathogenic Leptospira species. PLoS Negl Trop Dis 7:e1954

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hoffmann B, Scheuch M, Höper D et al (2012) Novel orthobunyavirus in Cattle, Europe, 2011. Emerg Infect Dis 18:469–472

    Article  PubMed Central  PubMed  Google Scholar 

  29. Granberg F, Vicente-Rubiano M, Rubio-Guerri C et al (2013) Metagenomic detection of viral pathogens in spanish honeybees: co-infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses. PLoS One 8:e57459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hunt PW (2011) Molecular diagnosis of infections and resistance in veterinary and human parasites. Vet Parasitol 180:12–46

    Article  PubMed  Google Scholar 

  31. Crawford PC, Slater MR, Levy JK (2005) Accuracy of polymerase chain reaction assays for diagnosis of feline immunodeficiency virus infection in cats. J Am Vet Med Assoc 226:1503–1507

    Article  CAS  PubMed  Google Scholar 

  32. Daniels JB (2013) Molecular diagnostics for infectious disease in small animal medicine: an overview from the laboratory. Vet Clin North Am Small Anim Pract 43:1373–1384

    Article  PubMed  Google Scholar 

  33. Duarte MD, Henriques AM, Santos-Barros S et al (2013) Snapshot of viral infections in wild carnivores reveals ubiquity of Parvovirus and susceptibility of Egyptian mongoose to Feline Panleukopenia Virus. PLoS One 8:e59399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pusterla N, Mapes S, Leutenegger CM (2006) Survey of the large-animal diplomates of the American College of Veterinary Internal Medicine regarding knowledge and clinical use of polymerase chain reaction: implications for veterinary education. J Vet Med Educ 33:605–611

    Article  PubMed  Google Scholar 

  35. Bearinger JP, Dugan LC, Baker BR et al (2011) Development and initial results of a low cost, disposable, point-of-care testing device for pathogen detection. IEEE Trans Biomed Eng 58:805–808

    Article  PubMed Central  PubMed  Google Scholar 

  36. Beyor N, Seo TS, Liu P et al (2008) Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed Microdevices 10:909–917

    Article  CAS  PubMed  Google Scholar 

  37. Kim J, Johnson M, Hill P et al (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol (Camb) 1:574–586

    Article  CAS  Google Scholar 

  38. Wen J, Legendre LA, Bienvenue JM et al (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80:6472–6479

    Article  CAS  PubMed  Google Scholar 

  39. Heo J, Hua SZ (2009) An overview of recent strategies in pathogen sensing. Sensors (Basel) 9:4483–4502

    Article  CAS  Google Scholar 

  40. Ahmad F, Hashsham SA (2012) Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review. Anal Chim Acta 733:1–15

    Article  CAS  PubMed  Google Scholar 

  41. Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161

    Article  CAS  PubMed  Google Scholar 

  42. Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62:408–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundacão para a Ciência e Tecnologia (FCT) through projects PTDC/CVT/111634/2009 and PTDC/CVT/117794/2010 and in the framework of Projecto 3599—Promover a Produção Científica e Desenvolvimento Tecnológico e a Constituição de Redes Temáticas.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mónica V. Cunha or João Inácio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cunha, M.V., Inácio, J. (2015). Overview and Challenges of Molecular Technologies in the Veterinary Microbiology Laboratory. In: Cunha, M., Inácio, J. (eds) Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies. Methods in Molecular Biology, vol 1247. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2004-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2004-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2003-7

  • Online ISBN: 978-1-4939-2004-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics