Skip to main content

Mapping Symplasmic Fields at the Shoot Apical Meristem Using Iontophoresis and Membrane Potential Measurements

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

Abstract

Microinjections of fluorescent dyes have revealed that the shoot apical meristem (SAM) is dynamically partitioned into symplasmic fields (SFs), implying that plasmodesmata (Pd) are held shut at specific locations in the proliferating cellular matrix. The SFs are integrated into a coherent morphogenetic unit by exchange of morphogens and transcription factors via gating Pd between adjacent SFs, and by ligand–receptor interactions that operate across the extracellular space. We describe a method for the real-time mapping of SF in the SAM by iontophoresis and membrane potential measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, New York

    Book  Google Scholar 

  2. Sussex IM (1989) Developmental programming of the shoot apical meristem. Cell 56:225–229

    Article  PubMed  CAS  Google Scholar 

  3. Van der Schoot C (1996) Dormancy and symplasmic networking at the shoot apical meristem. In: Lang GA (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 59–81

    Google Scholar 

  4. Rinne PLH, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485

    PubMed  CAS  Google Scholar 

  5. Van der Schoot C, Rinne PLH (2011) Dormancy cycling at the shoot apical meristem: transitioning between self-organisation and self-arrest. Plant Sci 180:120–131

    Article  PubMed  Google Scholar 

  6. Van der Schoot C, Rinne P (1999) Networks for shoot design. Trends Plant Sci 4:31–37

    Article  PubMed  Google Scholar 

  7. Schoof H, Lenhard M, Haecker A et al (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  8. Becraft PW (2002) Receptor kinase signalling in plant development. Annu Rev Cell Dev Biol 18:163–192

    Article  PubMed  CAS  Google Scholar 

  9. Reinhardt D, Pesce ER, Steiger T et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  10. Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  PubMed  CAS  Google Scholar 

  11. Böhlenius H, Huang T, Charbonell-Campaa L et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  12. Rinne PLH, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    Article  PubMed  CAS  Google Scholar 

  13. Bergmans A, de Boer D, Derksen D et al (1997) The symplasmic coupling of L2 cells diminishes in early floral development of Iris. Planta 203:245–252

    Article  CAS  Google Scholar 

  14. Ormenese S, Havelange A, Bernier G et al (2002) The shoot apical meristem of Sinapis alba L. expands its central symplasmic field during the floral transition. Planta 215:67–78

    Article  PubMed  CAS  Google Scholar 

  15. Ruonala R, Rinne P, Kangasjärvi J et al (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20:59–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Epel BL (1994) Plasmodesmata: composition, structure and trafficking. Plant Mol Biol 26:1343–1356

    Article  PubMed  CAS  Google Scholar 

  17. McLean BG, Hempel FD, Zambryski PC (1997) Plant intercellular communication via plasmodesmata. Plant Cell 9:1043–1054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Carpenter R, Coen ES (1995) Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development 121:19–26

    PubMed  CAS  Google Scholar 

  19. Perbal M-C, Haugh G, Seadler H et al (1996) Non-cell autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    PubMed  CAS  Google Scholar 

  20. Kim JY, Yuan Z, Jackson D (2003) Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351–4362

    Article  PubMed  CAS  Google Scholar 

  21. Urbanus SL, Martinelli AP, Dinh QD et al (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63:60–72

    PubMed  CAS  Google Scholar 

  22. Gisel A, Barella S, Hempel FD et al (1999) Temporal and spatial regulation of symplasmic trafficking during development in Arabidopsis thaliana apices. Development 126:1879–1889

    PubMed  CAS  Google Scholar 

  23. Corbusier L, Vincent C, Jang S et al (2007) FT protein movement contributes to long-distance signalling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  Google Scholar 

  24. Wu X, Dinneny JR, Crawford KM et al (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745

    Article  PubMed  CAS  Google Scholar 

  25. Stewart WW (1978) Functional coupling between cells as revealed by dye-coupling with a highly fluorescent napthalamide tracer. Cell 14:741–759

    Article  PubMed  CAS  Google Scholar 

  26. De Laat SW, Tertoolen LGJ, Dorrestein AWG et al (1980) Intercellular communication patterns are involved in cell determination in early molluscan development. Nature 287:546–548

    Article  PubMed  Google Scholar 

  27. Weisblat DA, Sawyer RT, Stent G (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202:1295–1298

    Article  PubMed  CAS  Google Scholar 

  28. Technau GM, Campos Ortega JA (1985) Fate mapping in wild type Drosophila melanogaster. II. Injections of horse radish peroxidase in cells of the early gastrula. Roux Arch Dev Biol 194:196–212

    Article  Google Scholar 

  29. Erwee MG, Goodwin PB (1985) Characterisation of the Egeria densa Planch. leaf symplast. Symplast domains in extrastelar tissues of Egeria densa. Planta 163:9–19

    Article  PubMed  CAS  Google Scholar 

  30. Tucker EB (1990) Analytical studies of dye-coupling between plant cells. In: Robards AW, Lucas WJ, Pitts JD et al (eds) Parallels in cell to cell junctions in plants and animals, vol 46, NATO ASI series, Series H: cell biology. Springer, Berlin, pp 239–248

    Chapter  Google Scholar 

  31. Brownlee C (1994) Microelectrode techniques in plant cells and microorganisms. In: Ogden D (ed) Microelectrode techniques: the Plymouth Workshop Handbook. Company of Biologists Limited, Cambridge, pp 347–359

    Google Scholar 

  32. Storms MMH, van der Schoot C, Prins M et al (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13:131–140

    Article  CAS  Google Scholar 

  33. Mobbs P, Becker D, Williamson R et al (1994) Techniques for dye injection and cell labelling. In: Ogden D (ed) Microelectrode techniques: the Plymouth Workshop Handbook. Company of Biologists, Cambridge, pp 361–387

    Google Scholar 

  34. Stewart WW (1981) Lucifer dyes: highly fluorescent dyes for biological tracing. Nature 292:17–21

    Article  PubMed  CAS  Google Scholar 

  35. Halliwell JV, Whitaker MJ, Ogden D (1994) Using microelectrodes. In: Ogden D (ed) Microelectrode techniques: the Plymouth Workshop Handbook. Company of Biologists, Cambridge, pp 1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiaan van der Schoot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

van der Schoot, C., Rinne, P.L.H. (2015). Mapping Symplasmic Fields at the Shoot Apical Meristem Using Iontophoresis and Membrane Potential Measurements. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics