Electroporation-Based Gene Therapy: Recent Evolution in the Mechanism Description and Technology Developments

  • Lluis M. Mir
Part of the Methods in Molecular Biology book series (MIMB, volume 1121)


Thirty years after the publication of the first report on gene electrotransfer in cultured cells by the delivery of delivering electric pulses, this technology is starting to be applied to humans. In 2008, at the time of the publication of the first edition of this book, reversible cell electroporation for gene transfer and gene therapy (nucleic acids electrotransfer) was at a cross roads in its development. In 5 years, basic and applied developments have brought gene electrotransfer into a new status. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here, as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted, as well as the large range of new specialized electrodes, developed also in the frame of the other electroporation-based treatments (electrochemotherapy). Indeed, electric pulses are now routinely applied for localized drug delivery in the treatment of solid tumors by electrochemotherapy. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed: noticeably, the first molecular description of the crossing of a lipid membrane by a nucleic acid was reported in 2012. The progress in the understanding of cell electroporation as well as developments of technological aspects, in silico, in vitro and in vivo, have contributed to bring gene electrotransfer development to the clinical stage. However, spreading of the technology will require not only more clinical trials but also further homogenization of the protocols and the preparation and validation of Standard Operating Procedures.

Key words

Electropermeabilization Electroporation DNA electrotransfer Theory Electric pulses Gene transfer Nonviral gene therapy 



L.M. Mir acknowledges all his colleagues for stimulating discussions. The work of his team is conducted in the scope of the LEA EBAM (European Associated Laboratory on the Applications of the Electric pulses in Biology And Medicine). Activities are presently supported through grants of the ANR (IPSIOAT, INTCELL, MEMOVE) and of the ANSES (MARFEM).


  1. 1.
    Escoffre JM, Portet T, Favard C, Teissie J, Dean DS, Rols MP (2011) Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochim Biophys Acta 1808:1538–1543PubMedCrossRefGoogle Scholar
  2. 2.
    Dean DA, Strong DD, Zimmer WE (2005) Nuclear entry of nonviral vectors. Gene Ther 12:881–890PubMedCrossRefGoogle Scholar
  3. 3.
    Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Nanosecond pulsed electric field driven transport of siRNA molecules through lipid membranes: an experimental and computational study. J Am Chem Soc 134:13938–13941PubMedCrossRefGoogle Scholar
  4. 4.
    Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845PubMedGoogle Scholar
  5. 5.
    Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903PubMedCrossRefGoogle Scholar
  6. 6.
    Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Cemazar M, Dam E, Vasseur B, Attali P, Mir LM, Gehl J (2013) Gene electrotransfer of plasmid AMEP in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 24(3):99–107PubMedCrossRefGoogle Scholar
  7. 7.
    Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B, Belehradek J Jr, Schwaab G, Luboinski B, Paoletti C (1991) Electrochemotherapy, a novel antitumor treatment : first clinical trial. C R Acad Sci III 313:613–618PubMedGoogle Scholar
  8. 8.
    Mir LM (2006) Bases and rationale of the electrochemotherapy. Eur J Cancer Suppl 4:38–44CrossRefGoogle Scholar
  9. 9.
    Marty M, Sersa G, Garbay JR, Gehl J, Collins C, Snoj M, Billard V, Geertsen P, Larkin J, Miklavcic D, Pavlovic I, Paulin-Kosir S, Cemazar M, Morsli N, Soden D, Rudolf Z, Robert C, O’Sullivan G, Mir LM (2006) Electrochemotherapy—a simple, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures for Electrochemotherapy) study. Eur J Cancer Suppl 4:3–13CrossRefGoogle Scholar
  10. 10.
    Mir LM, Gehl J, Sersa G, Collins C, Garbay JR, Billard V, Geertsen P, Rudolf Z, O’Sullivan G, Marty M (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator™ by means of invasive or non-invasive electrodes. Eur J Cancer Suppl 4:14–25CrossRefGoogle Scholar
  11. 11.
    Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209PubMedCrossRefGoogle Scholar
  12. 12.
    Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gimsa J, Wachner D (2001) Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys J 81:1888–1896PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Teissie J, Knutson VP, Tsong TY, Lane MD (1982) Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216:537–8PubMedCrossRefGoogle Scholar
  15. 15.
    Mir LM, Banoun H, Paoletti C (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res 175:15–25PubMedCrossRefGoogle Scholar
  16. 16.
    Silve A, Mir LM (2010) Cell electropermeabilisation and small molecules cellular uptake: the electrochemotherapy concept. In: Kee S, Lee E, Gehl J (eds) Electroporation in science and medicine. Springer, New YorkGoogle Scholar
  17. 17.
    Pron G, Belehradek J Jr, Mir LM (1993) Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun 194:333–337PubMedCrossRefGoogle Scholar
  18. 18.
    Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6282–6283CrossRefGoogle Scholar
  19. 19.
    Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Fernandez ML, Risk M, Reigada R, Vernier PT (2012) Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem Biophys Res Commun 423:325–330PubMedCrossRefGoogle Scholar
  21. 21.
    Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36PubMedCrossRefGoogle Scholar
  22. 22.
    Tokman M, Lee JH, Levine ZA, Ho MC, Colvin ME, Vernier PT (2013) Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS One 8:e61111PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58:1–12PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231PubMedCrossRefGoogle Scholar
  25. 25.
    Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4:699–705PubMedGoogle Scholar
  26. 26.
    Al-Sakere B, Bernat C, André F, Connault E, Opolon P, Davalos RV, Mir LM (2007) A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat 6:301–305PubMedGoogle Scholar
  27. 27.
    Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280PubMedCrossRefGoogle Scholar
  28. 28.
    Lopez A, Rols MP, Teissie J (1988) 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry 27:1222–1228PubMedCrossRefGoogle Scholar
  29. 29.
    Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267PubMedCrossRefGoogle Scholar
  30. 30.
    Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240PubMedCrossRefGoogle Scholar
  31. 31.
    Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D, Mir LM (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 5:133–140PubMedCrossRefGoogle Scholar
  32. 32.
    Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki T, Shin BC, Fujikura K, Matsuzaki T, Takata K (1998) Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 425:436–440PubMedCrossRefGoogle Scholar
  34. 34.
    Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870PubMedCrossRefGoogle Scholar
  35. 35.
    Poddevin B, Orlowski S, Belehradek J Jr, Mir LM (1991) Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem Pharmacol 42(Suppl):S67–75PubMedCrossRefGoogle Scholar
  36. 36.
    Bazile D, Mir LM, Paoletti C (1989) Voltage-dependent introduction of a d[alpha]octothymidylate into electropermeabilized cells. Biochem Biophys Res Commun 159:633–639PubMedCrossRefGoogle Scholar
  37. 37.
    Casabianca-Pignède M-R, Mir LM, Le Pecq J-B, Jacquemin-Sablon A (1991) Stability of antiricin antibodies introduced into DC-3F Chinese hamster cells by electropermeabilization. J Cell Pharmacol 2:54–60Google Scholar
  38. 38.
    Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Teissie J, Ramos C (1998) Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes. Biophys J 74:1889–1898PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Bureau MF, Gehl J, Deleuze V, Mir LM, Scherman D (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 1474:353–359PubMedCrossRefGoogle Scholar
  41. 41.
    Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM (2005) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther 16:1194–1201PubMedCrossRefGoogle Scholar
  42. 42.
    Faurie C, Phez E, Golzio M, Vossen C, Lesbordes JC, Delteil C, Teissie J, Rols MP (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochim Biophys Acta 1665:92–100PubMedCrossRefGoogle Scholar
  43. 43.
    Rebersek M, Faurie C, Kanduser M, Corovic S, Teissie J, Rols MP, Miklavcic D (2007) Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro. Biomed Eng Online 6:25PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Teissie J, Blangero C (1984) Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion. Biochim Biophys Acta 775:446–448PubMedCrossRefGoogle Scholar
  45. 45.
    Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study. Bioelectrochemistry 74:265–271PubMedCrossRefGoogle Scholar
  47. 47.
    Liew A, André FM, Lesueur L, De Ménorval M-A, O’Brien T, Mir LM (2013) Robust, efficient and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum Gene Ther Methods 24(5):289–297PubMedCrossRefGoogle Scholar
  48. 48.
    Joubert V, André FM, Schmeer M, Schleef M, Mir LM (2013) Increased efficiency of minicircles versus plasmids under gene electrotransfer suboptimal conditions: an influence of the extracellular matrix. In: Schleef M (ed) Minicircle and miniplasmid DNA vectors, the future of non-viral and viral gene transfer. Wiley-VCH, Weinheim, pp 215–225CrossRefGoogle Scholar
  49. 49.
    André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols M-P, Miklavcic D, Teissié J, Mir LM (2008) High efficacy of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Hum Gene Ther 19:1261–1271PubMedCrossRefGoogle Scholar
  50. 50.
    Miklavcic D, Semrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83PubMedCrossRefGoogle Scholar
  51. 51.
    Sel D, Mazeres S, Teissie J, Miklavcic D (2003) Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation. IEEE Trans Biomed Eng 50:1221–1232PubMedCrossRefGoogle Scholar
  52. 52.
    Ivorra A, Mir LM, Rubinsky B (2009) Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. IFMBE Proc 25:59–62CrossRefGoogle Scholar
  53. 53.
    Ivorra A, Villemejane J, Mir LM (2010) Electrical modeling of the influence of medium conductivity on electroporation. Phys Chem Chem Phys 12:10055–10064PubMedCrossRefGoogle Scholar
  54. 54.
    Ivorra A, Al-Sakere B, Rubinsky B, Mir LM (2009) In vivo electrical conductivity measurements during and after electroporation of sarcomas: conductivity changes reflect treatment outcome. Phys Med Biol 54:5949–5963PubMedCrossRefGoogle Scholar
  55. 55.
    Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D (2012) Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J Membr Biol 236:147–153CrossRefGoogle Scholar
  56. 56.
    Zupanic A, Kos B, Miklavcic D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57:5425–5440PubMedCrossRefGoogle Scholar
  57. 57.
    Belehradek J Jr, Orlowski S, Ramirez LH, Pron G, Poddevin B, Mir LM (1994) Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim Biophys Acta 1190:155–163PubMedCrossRefGoogle Scholar
  58. 58.
    Tounekti O, Pron G, Belehradek J Jr, Mir LM (1993) Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 53:5462–5469PubMedGoogle Scholar
  59. 59.
    Poddevin B, Belehradek J Jr, Mir LM (1990) Stable [57Co]-bleomycin complex with a very high specific radioactivity for use at very low concentrations. Biochem Biophys Res Commun 173:259–264PubMedCrossRefGoogle Scholar
  60. 60.
    Engstrom PE, Persson BR, Salford LG (1999) Studies of in vivo electropermeabilization by gamma camera measurements of (99m)Tc-DTPA. Biochim Biophys Acta 1473:321–328PubMedCrossRefGoogle Scholar
  61. 61.
    Cukjati D, Batiuskaite D, André FM, Miklavčič D, Mir LM (2007) Real time electroporation level detection method for accurate and safe nonviral gene therapy. Bioelectrochemistry 70:501–507PubMedCrossRefGoogle Scholar
  62. 62.
    Gehl J, Skovsgaard T, Mir LM (2002) Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta 1569:51–58PubMedCrossRefGoogle Scholar
  63. 63.
    Ramirez LH, Orlowski S, An D, Bindoula G, Dzodic R, Ardouin P, Bognel C, Belehradek J Jr, Munck JN, Mir LM (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77:2104–2111PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Sersa G, Cemazar M, Parkins CS, Chaplin DJ (1999) Tumour blood flow changes induced by application of electric pulses. Eur J Cancer 35:672–677PubMedCrossRefGoogle Scholar
  65. 65.
    Sersa G, Cemazar M, Miklavcic D, Chaplin DJ (1999) Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Res 19:4017–4022PubMedGoogle Scholar
  66. 66.
    André F, Mir LM (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11(Suppl 1):S33–42PubMedCrossRefGoogle Scholar
  67. 67.
    Mir LM, Moller PH, Andre F, Gehl J (2005) Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54:83–114PubMedCrossRefGoogle Scholar
  68. 68.
    Peng B, Zhao Y, Lu H, Pang W, Xu Y (2005) In vivo plasmid DNA electroporation resulted in transfection of satellite cells and lasting transgene expression in regenerated muscle fibers. Biochem Biophys Res Commun 338:1490–1498PubMedCrossRefGoogle Scholar
  69. 69.
    Liu F, Huang L (2002) A syringe electrode device for simultaneous injection of DNA and electrotransfer. Mol Ther 5:323–328PubMedCrossRefGoogle Scholar
  70. 70.
    André FM, Mir LM (2010) Nucleic acids electrotransfer in vivo: mechanisms and practical aspects. Curr Gene Ther 4:267–280CrossRefGoogle Scholar
  71. 71.
    Orlowski S, Belehradek J Jr, Paoletti C, Mir LM (1988) Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol 37:4727–4733PubMedCrossRefGoogle Scholar
  72. 72.
    Orlowski S, Mir LM (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta 1154:51–63PubMedCrossRefGoogle Scholar
  73. 73.
    Mir LM, Orlowski S, Belehradek J Jr, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72PubMedCrossRefGoogle Scholar
  74. 74.
    Belehradek J Jr, Orlowski S, Poddevin B, Paoletti C, Mir LM (1991) Electrochemotherapy of spontaneous mammary tumours in mice. Eur J Cancer 27:73–76PubMedCrossRefGoogle Scholar
  75. 75.
    Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Mir LM (2001) Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectro-chemistry 53:1–10Google Scholar
  77. 77.
    Miklavcic D, Corovic S, Pucihar G, Pavselj N (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer Suppl 4:45–51CrossRefGoogle Scholar
  78. 78.
    Ivorra A, Al-Sakere B, Rubinsky B, Mir LM (2008) Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Phys Med Biol 53:6605–6618PubMedCrossRefGoogle Scholar
  79. 79.
    Čorović S, Al Sakere B, Haddad V, Miklavčič D, Mir LM (2008) Importance of contact surface between electrodes and treated tissue in electrochemotherapy. Technol Cancer Res Treat 7:393–400PubMedGoogle Scholar
  80. 80.
    Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer 72:3694–3700PubMedCrossRefGoogle Scholar
  81. 81.
    Domenge C, Orlowski S, Luboinski B, De Baere T, Schwaab G, Belehradek J Jr, Mir LM (1996) Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer 77:956–963PubMedCrossRefGoogle Scholar
  82. 82.
    Heller R, Jaroszeski MJ, Glass LF, Messina JL, Rapaport DP, DeConti RC, Fenske NA, Gilbert RA, Mir LM, Reintgen DS (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer 77:964–971PubMedCrossRefGoogle Scholar
  83. 83.
    Mir LM, Devauchelle P, Quintin-Colonna F, Delisle F, Doliger S, Fradelizi D, Belehradek J Jr, Orlowski S (1997) First clinical trial of electrochemotherapy for the treatment of cat soft tissue sarcomas. Br J Cancer 76:1617–1622PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Cemazar M, Tamzali Y, Sersa G, Tozon N, Mir LM, Miklavcic D, Lowe R, Teissie J (2008) Electrochemotherapy in veterinary oncology. J Vet Intern Med 22:826–831PubMedCrossRefGoogle Scholar
  85. 85.
    Al-Sakere B, Bernat C, André F, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007) Tumor ablation with irreversible electroporation. PLoS One 2:e1135PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Mahmood F, Gehl J (2011) Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation. Bioelectrochemistry 81:10–16PubMedCrossRefGoogle Scholar
  87. 87.
    Sadadcharam M, Piggott J, Cogan L, Soden D, O'Sullivan GC (2007) Application of electroporation-driven intraluminal gene delivery. Hum Gene Ther 18:964–965Google Scholar
  88. 88.
    Daugimont L, Baron N, Vandermeulen G, Pavselj N, Miklavcic D, Jullien M-C, Cabodevila G, Mir LM, Préat V (2010) Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol 236:117–125PubMedCrossRefGoogle Scholar
  89. 89.
    Tjelle TE, Salte R, Mathiesen I, Kjeken R (2006) A novel electroporation device for gene delivery in large animals and humans. Vaccine 24:4667–4670PubMedCrossRefGoogle Scholar
  90. 90.
    Ferraro B, Heller LC, Cruz YL, Guo SQ, Donate A, Heller R (2011) Evaluation of delivery conditions for cutaneous plasmid electrotransfer using a multielectrode array. Gene Ther 18:496–500PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Guo SQ, Donate A, Lundberg C, Heller L, Heller R (2011) Electro-gene transfer to skin using a noninvasive multielectrode array. J Control Release 151:256–262PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Hargrave B, Downey H, Strange R, Murray L, Cinnamond C, Lundberg C, Israel A, Chen YJ, Marshall W, Heller R (2013) Electroporation-mediated gene transfer directly to the swine heart. Gene Ther 20:151–157PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Gehl J, Mir LM (1999) Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Commun 261:377–380PubMedCrossRefGoogle Scholar
  94. 94.
    Hojman P, Gissel H, André FM, Cournil-Henrionnet C, Eriksen J, Gehl J, Mir LM (2008) Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther 19:1249–1260PubMedCrossRefGoogle Scholar
  95. 95.
    Schleef M (ed) (2013) Minicircle and miniplasmid DNA vectors, the future of non-viral and viral gene transfer. Wiley-VCH, WeinheimGoogle Scholar
  96. 96.
    Silve A, Leray I, Mir LM (2012) Demonstration of cell membrane permeabilisation to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 87:260–264PubMedCrossRefGoogle Scholar
  97. 97.
    Čorović S, Županič A, Kranjc S, Al Sakere B, Leroy-Willig A, Mir LM, Miklavčič D (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modelling. Med Biol Eng Comput 48:637–648PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Čorović S, Mir LM, Miklavčič D (2012) In vivo muscle electroporation threshold determination—realistic numerical models and in vivo experiments. J Membr Biol 245:509–520PubMedCrossRefGoogle Scholar
  99. 99.
    Breton M, Mir LM (2012) Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 33:106–133CrossRefGoogle Scholar
  100. 100.
    Villemejane J, Mir LM (2009) Physical methods of nucleic acids transfer—general concepts and applications. Br J Pharmacol 157:207–219PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lluis M. Mir
    • 1
    • 2
    • 3
  1. 1.Laboratoire de Vectorologie et Therapeutiques Anticancereuses, UMR, Univ Paris-SudVillejuifFrance
  2. 2.Laboratoire de Vectorologie et Therapeutiques Anticancereuses, CNRS, UMRVillejuifFrance
  3. 3.Laboratoire de Vectorologie et Therapeutiques Anticancereuses, Gustave Roussy, UMRVillejuifFrance

Personalised recommendations