Skip to main content

Electroporation-Based Gene Therapy: Recent Evolution in the Mechanism Description and Technology Developments

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Thirty years after the publication of the first report on gene electrotransfer in cultured cells by the delivery of delivering electric pulses, this technology is starting to be applied to humans. In 2008, at the time of the publication of the first edition of this book, reversible cell electroporation for gene transfer and gene therapy (nucleic acids electrotransfer) was at a cross roads in its development. In 5 years, basic and applied developments have brought gene electrotransfer into a new status. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here, as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted, as well as the large range of new specialized electrodes, developed also in the frame of the other electroporation-based treatments (electrochemotherapy). Indeed, electric pulses are now routinely applied for localized drug delivery in the treatment of solid tumors by electrochemotherapy. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed: noticeably, the first molecular description of the crossing of a lipid membrane by a nucleic acid was reported in 2012. The progress in the understanding of cell electroporation as well as developments of technological aspects, in silico, in vitro and in vivo, have contributed to bring gene electrotransfer development to the clinical stage. However, spreading of the technology will require not only more clinical trials but also further homogenization of the protocols and the preparation and validation of Standard Operating Procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Escoffre JM, Portet T, Favard C, Teissie J, Dean DS, Rols MP (2011) Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochim Biophys Acta 1808:1538–1543

    Article  CAS  PubMed  Google Scholar 

  2. Dean DA, Strong DD, Zimmer WE (2005) Nuclear entry of nonviral vectors. Gene Ther 12:881–890

    Article  CAS  PubMed  Google Scholar 

  3. Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Nanosecond pulsed electric field driven transport of siRNA molecules through lipid membranes: an experimental and computational study. J Am Chem Soc 134:13938–13941

    Article  CAS  PubMed  Google Scholar 

  4. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed  Google Scholar 

  5. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    Article  CAS  PubMed  Google Scholar 

  6. Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Cemazar M, Dam E, Vasseur B, Attali P, Mir LM, Gehl J (2013) Gene electrotransfer of plasmid AMEP in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 24(3):99–107

    Article  CAS  PubMed  Google Scholar 

  7. Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B, Belehradek J Jr, Schwaab G, Luboinski B, Paoletti C (1991) Electrochemotherapy, a novel antitumor treatment : first clinical trial. C R Acad Sci III 313:613–618

    CAS  PubMed  Google Scholar 

  8. Mir LM (2006) Bases and rationale of the electrochemotherapy. Eur J Cancer Suppl 4:38–44

    Article  Google Scholar 

  9. Marty M, Sersa G, Garbay JR, Gehl J, Collins C, Snoj M, Billard V, Geertsen P, Larkin J, Miklavcic D, Pavlovic I, Paulin-Kosir S, Cemazar M, Morsli N, Soden D, Rudolf Z, Robert C, O’Sullivan G, Mir LM (2006) Electrochemotherapy—a simple, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures for Electrochemotherapy) study. Eur J Cancer Suppl 4:3–13

    Article  CAS  Google Scholar 

  10. Mir LM, Gehl J, Sersa G, Collins C, Garbay JR, Billard V, Geertsen P, Rudolf Z, O’Sullivan G, Marty M (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator™ by means of invasive or non-invasive electrodes. Eur J Cancer Suppl 4:14–25

    Article  CAS  Google Scholar 

  11. Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209

    Article  CAS  PubMed  Google Scholar 

  12. Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gimsa J, Wachner D (2001) Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys J 81:1888–1896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Teissie J, Knutson VP, Tsong TY, Lane MD (1982) Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216:537–8

    Article  CAS  PubMed  Google Scholar 

  15. Mir LM, Banoun H, Paoletti C (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res 175:15–25

    Article  CAS  PubMed  Google Scholar 

  16. Silve A, Mir LM (2010) Cell electropermeabilisation and small molecules cellular uptake: the electrochemotherapy concept. In: Kee S, Lee E, Gehl J (eds) Electroporation in science and medicine. Springer, New York

    Google Scholar 

  17. Pron G, Belehradek J Jr, Mir LM (1993) Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun 194:333–337

    Article  CAS  PubMed  Google Scholar 

  18. Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6282–6283

    Article  Google Scholar 

  19. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fernandez ML, Risk M, Reigada R, Vernier PT (2012) Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem Biophys Res Commun 423:325–330

    Article  CAS  PubMed  Google Scholar 

  21. Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36

    Article  CAS  PubMed  Google Scholar 

  22. Tokman M, Lee JH, Levine ZA, Ho MC, Colvin ME, Vernier PT (2013) Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS One 8:e61111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58:1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231

    Article  CAS  PubMed  Google Scholar 

  25. Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4:699–705

    PubMed  Google Scholar 

  26. Al-Sakere B, Bernat C, André F, Connault E, Opolon P, Davalos RV, Mir LM (2007) A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat 6:301–305

    CAS  PubMed  Google Scholar 

  27. Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280

    Article  CAS  PubMed  Google Scholar 

  28. Lopez A, Rols MP, Teissie J (1988) 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry 27:1222–1228

    Article  CAS  PubMed  Google Scholar 

  29. Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  CAS  PubMed  Google Scholar 

  30. Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240

    Article  CAS  PubMed  Google Scholar 

  31. Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D, Mir LM (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 5:133–140

    Article  CAS  PubMed  Google Scholar 

  32. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki T, Shin BC, Fujikura K, Matsuzaki T, Takata K (1998) Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 425:436–440

    Article  CAS  PubMed  Google Scholar 

  34. Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  CAS  PubMed  Google Scholar 

  35. Poddevin B, Orlowski S, Belehradek J Jr, Mir LM (1991) Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem Pharmacol 42(Suppl):S67–75

    Article  CAS  PubMed  Google Scholar 

  36. Bazile D, Mir LM, Paoletti C (1989) Voltage-dependent introduction of a d[alpha]octothymidylate into electropermeabilized cells. Biochem Biophys Res Commun 159:633–639

    Article  CAS  PubMed  Google Scholar 

  37. Casabianca-Pignède M-R, Mir LM, Le Pecq J-B, Jacquemin-Sablon A (1991) Stability of antiricin antibodies introduced into DC-3F Chinese hamster cells by electropermeabilization. J Cell Pharmacol 2:54–60

    Google Scholar 

  38. Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Teissie J, Ramos C (1998) Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes. Biophys J 74:1889–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bureau MF, Gehl J, Deleuze V, Mir LM, Scherman D (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 1474:353–359

    Article  CAS  PubMed  Google Scholar 

  41. Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM (2005) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther 16:1194–1201

    Article  CAS  PubMed  Google Scholar 

  42. Faurie C, Phez E, Golzio M, Vossen C, Lesbordes JC, Delteil C, Teissie J, Rols MP (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochim Biophys Acta 1665:92–100

    Article  CAS  PubMed  Google Scholar 

  43. Rebersek M, Faurie C, Kanduser M, Corovic S, Teissie J, Rols MP, Miklavcic D (2007) Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro. Biomed Eng Online 6:25

    Article  PubMed Central  PubMed  Google Scholar 

  44. Teissie J, Blangero C (1984) Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion. Biochim Biophys Acta 775:446–448

    Article  CAS  PubMed  Google Scholar 

  45. Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study. Bioelectrochemistry 74:265–271

    Article  CAS  PubMed  Google Scholar 

  47. Liew A, André FM, Lesueur L, De Ménorval M-A, O’Brien T, Mir LM (2013) Robust, efficient and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum Gene Ther Methods 24(5):289–297

    Article  CAS  PubMed  Google Scholar 

  48. Joubert V, André FM, Schmeer M, Schleef M, Mir LM (2013) Increased efficiency of minicircles versus plasmids under gene electrotransfer suboptimal conditions: an influence of the extracellular matrix. In: Schleef M (ed) Minicircle and miniplasmid DNA vectors, the future of non-viral and viral gene transfer. Wiley-VCH, Weinheim, pp 215–225

    Chapter  Google Scholar 

  49. André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols M-P, Miklavcic D, Teissié J, Mir LM (2008) High efficacy of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Hum Gene Ther 19:1261–1271

    Article  PubMed  Google Scholar 

  50. Miklavcic D, Semrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83

    Article  CAS  PubMed  Google Scholar 

  51. Sel D, Mazeres S, Teissie J, Miklavcic D (2003) Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation. IEEE Trans Biomed Eng 50:1221–1232

    Article  PubMed  Google Scholar 

  52. Ivorra A, Mir LM, Rubinsky B (2009) Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. IFMBE Proc 25:59–62

    Article  Google Scholar 

  53. Ivorra A, Villemejane J, Mir LM (2010) Electrical modeling of the influence of medium conductivity on electroporation. Phys Chem Chem Phys 12:10055–10064

    Article  CAS  PubMed  Google Scholar 

  54. Ivorra A, Al-Sakere B, Rubinsky B, Mir LM (2009) In vivo electrical conductivity measurements during and after electroporation of sarcomas: conductivity changes reflect treatment outcome. Phys Med Biol 54:5949–5963

    Article  PubMed  Google Scholar 

  55. Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D (2012) Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J Membr Biol 236:147–153

    Article  Google Scholar 

  56. Zupanic A, Kos B, Miklavcic D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57:5425–5440

    Article  PubMed  Google Scholar 

  57. Belehradek J Jr, Orlowski S, Ramirez LH, Pron G, Poddevin B, Mir LM (1994) Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim Biophys Acta 1190:155–163

    Article  CAS  PubMed  Google Scholar 

  58. Tounekti O, Pron G, Belehradek J Jr, Mir LM (1993) Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 53:5462–5469

    CAS  PubMed  Google Scholar 

  59. Poddevin B, Belehradek J Jr, Mir LM (1990) Stable [57Co]-bleomycin complex with a very high specific radioactivity for use at very low concentrations. Biochem Biophys Res Commun 173:259–264

    Article  CAS  PubMed  Google Scholar 

  60. Engstrom PE, Persson BR, Salford LG (1999) Studies of in vivo electropermeabilization by gamma camera measurements of (99m)Tc-DTPA. Biochim Biophys Acta 1473:321–328

    Article  CAS  PubMed  Google Scholar 

  61. Cukjati D, Batiuskaite D, André FM, Miklavčič D, Mir LM (2007) Real time electroporation level detection method for accurate and safe nonviral gene therapy. Bioelectrochemistry 70:501–507

    Article  CAS  PubMed  Google Scholar 

  62. Gehl J, Skovsgaard T, Mir LM (2002) Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta 1569:51–58

    Article  CAS  PubMed  Google Scholar 

  63. Ramirez LH, Orlowski S, An D, Bindoula G, Dzodic R, Ardouin P, Bognel C, Belehradek J Jr, Munck JN, Mir LM (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77:2104–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sersa G, Cemazar M, Parkins CS, Chaplin DJ (1999) Tumour blood flow changes induced by application of electric pulses. Eur J Cancer 35:672–677

    Article  CAS  PubMed  Google Scholar 

  65. Sersa G, Cemazar M, Miklavcic D, Chaplin DJ (1999) Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Res 19:4017–4022

    CAS  PubMed  Google Scholar 

  66. André F, Mir LM (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11(Suppl 1):S33–42

    Article  PubMed  Google Scholar 

  67. Mir LM, Moller PH, Andre F, Gehl J (2005) Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54:83–114

    Article  CAS  PubMed  Google Scholar 

  68. Peng B, Zhao Y, Lu H, Pang W, Xu Y (2005) In vivo plasmid DNA electroporation resulted in transfection of satellite cells and lasting transgene expression in regenerated muscle fibers. Biochem Biophys Res Commun 338:1490–1498

    Article  CAS  PubMed  Google Scholar 

  69. Liu F, Huang L (2002) A syringe electrode device for simultaneous injection of DNA and electrotransfer. Mol Ther 5:323–328

    Article  CAS  PubMed  Google Scholar 

  70. André FM, Mir LM (2010) Nucleic acids electrotransfer in vivo: mechanisms and practical aspects. Curr Gene Ther 4:267–280

    Article  Google Scholar 

  71. Orlowski S, Belehradek J Jr, Paoletti C, Mir LM (1988) Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol 37:4727–4733

    Article  CAS  PubMed  Google Scholar 

  72. Orlowski S, Mir LM (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta 1154:51–63

    Article  CAS  PubMed  Google Scholar 

  73. Mir LM, Orlowski S, Belehradek J Jr, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    Article  CAS  PubMed  Google Scholar 

  74. Belehradek J Jr, Orlowski S, Poddevin B, Paoletti C, Mir LM (1991) Electrochemotherapy of spontaneous mammary tumours in mice. Eur J Cancer 27:73–76

    Article  PubMed  Google Scholar 

  75. Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Mir LM (2001) Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectro-chemistry 53:1–10

    CAS  Google Scholar 

  77. Miklavcic D, Corovic S, Pucihar G, Pavselj N (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer Suppl 4:45–51

    Article  Google Scholar 

  78. Ivorra A, Al-Sakere B, Rubinsky B, Mir LM (2008) Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Phys Med Biol 53:6605–6618

    Article  PubMed  Google Scholar 

  79. Čorović S, Al Sakere B, Haddad V, Miklavčič D, Mir LM (2008) Importance of contact surface between electrodes and treated tissue in electrochemotherapy. Technol Cancer Res Treat 7:393–400

    PubMed  Google Scholar 

  80. Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer 72:3694–3700

    Article  CAS  PubMed  Google Scholar 

  81. Domenge C, Orlowski S, Luboinski B, De Baere T, Schwaab G, Belehradek J Jr, Mir LM (1996) Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer 77:956–963

    Article  CAS  PubMed  Google Scholar 

  82. Heller R, Jaroszeski MJ, Glass LF, Messina JL, Rapaport DP, DeConti RC, Fenske NA, Gilbert RA, Mir LM, Reintgen DS (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer 77:964–971

    Article  CAS  PubMed  Google Scholar 

  83. Mir LM, Devauchelle P, Quintin-Colonna F, Delisle F, Doliger S, Fradelizi D, Belehradek J Jr, Orlowski S (1997) First clinical trial of electrochemotherapy for the treatment of cat soft tissue sarcomas. Br J Cancer 76:1617–1622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Cemazar M, Tamzali Y, Sersa G, Tozon N, Mir LM, Miklavcic D, Lowe R, Teissie J (2008) Electrochemotherapy in veterinary oncology. J Vet Intern Med 22:826–831

    Article  CAS  PubMed  Google Scholar 

  85. Al-Sakere B, Bernat C, André F, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007) Tumor ablation with irreversible electroporation. PLoS One 2:e1135

    Article  PubMed Central  PubMed  Google Scholar 

  86. Mahmood F, Gehl J (2011) Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation. Bioelectrochemistry 81:10–16

    Article  CAS  PubMed  Google Scholar 

  87. Sadadcharam M, Piggott J, Cogan L, Soden D, O'Sullivan GC (2007) Application of electroporation-driven intraluminal gene delivery. Hum Gene Ther 18:964–965

    Google Scholar 

  88. Daugimont L, Baron N, Vandermeulen G, Pavselj N, Miklavcic D, Jullien M-C, Cabodevila G, Mir LM, Préat V (2010) Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol 236:117–125

    Article  CAS  PubMed  Google Scholar 

  89. Tjelle TE, Salte R, Mathiesen I, Kjeken R (2006) A novel electroporation device for gene delivery in large animals and humans. Vaccine 24:4667–4670

    Article  CAS  PubMed  Google Scholar 

  90. Ferraro B, Heller LC, Cruz YL, Guo SQ, Donate A, Heller R (2011) Evaluation of delivery conditions for cutaneous plasmid electrotransfer using a multielectrode array. Gene Ther 18:496–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Guo SQ, Donate A, Lundberg C, Heller L, Heller R (2011) Electro-gene transfer to skin using a noninvasive multielectrode array. J Control Release 151:256–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Hargrave B, Downey H, Strange R, Murray L, Cinnamond C, Lundberg C, Israel A, Chen YJ, Marshall W, Heller R (2013) Electroporation-mediated gene transfer directly to the swine heart. Gene Ther 20:151–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Gehl J, Mir LM (1999) Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Commun 261:377–380

    Article  CAS  PubMed  Google Scholar 

  94. Hojman P, Gissel H, André FM, Cournil-Henrionnet C, Eriksen J, Gehl J, Mir LM (2008) Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther 19:1249–1260

    Article  CAS  PubMed  Google Scholar 

  95. Schleef M (ed) (2013) Minicircle and miniplasmid DNA vectors, the future of non-viral and viral gene transfer. Wiley-VCH, Weinheim

    Google Scholar 

  96. Silve A, Leray I, Mir LM (2012) Demonstration of cell membrane permeabilisation to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 87:260–264

    Article  CAS  PubMed  Google Scholar 

  97. Čorović S, Županič A, Kranjc S, Al Sakere B, Leroy-Willig A, Mir LM, Miklavčič D (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modelling. Med Biol Eng Comput 48:637–648

    Article  PubMed Central  PubMed  Google Scholar 

  98. Čorović S, Mir LM, Miklavčič D (2012) In vivo muscle electroporation threshold determination—realistic numerical models and in vivo experiments. J Membr Biol 245:509–520

    Article  PubMed  Google Scholar 

  99. Breton M, Mir LM (2012) Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 33:106–133

    Article  Google Scholar 

  100. Villemejane J, Mir LM (2009) Physical methods of nucleic acids transfer—general concepts and applications. Br J Pharmacol 157:207–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.M. Mir acknowledges all his colleagues for stimulating discussions. The work of his team is conducted in the scope of the LEA EBAM (European Associated Laboratory on the Applications of the Electric pulses in Biology And Medicine). Activities are presently supported through grants of the ANR (IPSIOAT, INTCELL, MEMOVE) and of the ANSES (MARFEM).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mir, L.M. (2014). Electroporation-Based Gene Therapy: Recent Evolution in the Mechanism Description and Technology Developments. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics